Accurate extraction and segmentation of the cerebral arteries from digital subtraction angiography (DSA) sequences is essential for developing reliable clinical management models of complex cerebrovascular diseases. Conventional loss functions often rely solely on pixel-wise overlap, overlooking the geometric and physical consistency of vascular boundaries, which can lead to fragmented or unstable vessel predictions. To overcome this limitation, we propose a novel \textit{Physics-Informed Loss} (PIL) that models the interaction between the predicted and ground-truth boundaries as an elastic process inspired by dislocation theory in materials physics. This formulation introduces a physics-based regularization term that enforces smooth contour evolution and structural consistency, allowing the network to better capture fine vascular geometry. The proposed loss is integrated into several segmentation architectures, including U-Net, U-Net++, SegFormer, and MedFormer, and evaluated on two public benchmarks: DIAS and DSCA. Experimental results demonstrate that PIL consistently outperforms conventional loss functions such as Cross-Entropy, Dice, Active Contour, and Surface losses, achieving superior sensitivity, F1 score, and boundary coherence. These findings confirm that the incorporation of physics-based boundary interactions into deep neural networks improves both the precision and robustness of vascular segmentation in dynamic angiographic imaging. The implementation of the proposed method is publicly available at https://github.com/irfantahir301/Physicsis_loss.


翻译:从数字减影血管造影(DSA)序列中准确提取和分割脑动脉对于建立复杂脑血管疾病的可靠临床管理模型至关重要。传统的损失函数通常仅依赖于像素级重叠,忽视了血管边界的几何与物理一致性,这可能导致血管预测结果出现断裂或不稳定。为克服这一局限,我们提出了一种新颖的物理信息损失(PIL),该函数受材料物理中位错理论的启发,将预测边界与真实边界之间的相互作用建模为一个弹性过程。此公式引入了一个基于物理的正则化项,强制实现平滑的轮廓演化和结构一致性,使网络能更好地捕捉细微的血管几何特征。所提出的损失函数被集成到多种分割架构中,包括U-Net、U-Net++、SegFormer和MedFormer,并在两个公开基准数据集DIAS和DSCA上进行了评估。实验结果表明,PIL在敏感性、F1分数和边界一致性方面持续优于传统损失函数,如交叉熵损失、Dice损失、主动轮廓损失和表面损失。这些发现证实,将基于物理的边界相互作用融入深度神经网络,可提高动态血管成像中血管分割的精确性和鲁棒性。该方法的实现代码已在https://github.com/irfantahir301/Physicsis_loss公开提供。

0
下载
关闭预览

相关内容

【ICML2024】TIMEX++: 通过信息瓶颈学习时间序列解释
专知会员服务
17+阅读 · 2024年5月16日
【CVPR2024】医学基础模型的低秩知识分解
专知会员服务
35+阅读 · 2024年4月29日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员