The sequence space of all real-valued sequences, denoted $Seq(\mathbb{R})$, is typically investigated through the lens of infinite-dimensional vector spaces, utilizing Banach space norms or Schauder bases. This work proposes a complementary, constructive classification based instead on the asymptotic limit profile encoded by the pair $(\liminf a_n, \limsup a_n)$. We demonstrate that this perspective naturally partitions $Seq(\mathbb{R})$ into seven mutually disjoint macroscale blocks, covering behaviors from finite convergence to bounded and unbounded oscillation. For each block, we provide explicit closed-form representative sequences and establish that every constituent class possesses the cardinality of the continuum. Furthermore, we investigate the structural relationships between these blocks at two distinct levels of granularity. At the macroscale, we employ injective mappings to define an idealized connectivity graph, while at the microscale, we introduce a connection relation governed by the Hadamard (pointwise) product. This dual analysis reveals a rich directed graph structure where the block of finite convergent sequences functions as a global attractor with no outgoing connections. Statistical comparisons between the idealized and realized adjacency matrices indicate that the pointwise product structure realizes approximately two-thirds of the theoretically possible macroscale relations. Ultimately, this partition-based framework endows the seemingly chaotic space $Seq(\mathbb{R})$ with a transparent, geometrically interpretable internal structure.
翻译:所有实值序列构成的序列空间,记作 $Seq(\\mathbb{R})$,通常通过无限维向量空间的视角进行研究,利用 Banach 空间范数或 Schauder 基。本文提出了一种互补的、基于由 $\\liminf a_n$ 和 $\\limsup a_n$ 编码的渐近极限剖面的构造性分类。我们证明,这一视角自然地将 $Seq(\\mathbb{R})$ 划分为七个互不相交的宏观尺度块,覆盖了从有限收敛到有界及无界振荡的行为。对于每个块,我们提供了显式的闭式代表序列,并证明每个构成类都具有连续统的基数。此外,我们在两个不同的粒度层次上研究了这些块之间的结构关系。在宏观尺度上,我们采用单射映射来定义理想化的连通图;而在微观尺度上,我们引入了由 Hadamard(逐点)积控制的连接关系。这种双重分析揭示了一个丰富的有向图结构,其中有限收敛序列块作为全局吸引子,没有外向连接。理想化与实现的邻接矩阵之间的统计比较表明,逐点积结构实现了约三分之二理论上可能的宏观尺度关系。最终,这种基于划分的框架为看似混沌的空间 $Seq(\\mathbb{R})$ 赋予了透明且几何可解释的内部结构。