The sequence space of all real-valued sequences, denoted $Seq(\mathbb{R})$, is typically investigated through the lens of infinite-dimensional vector spaces, utilizing Banach space norms or Schauder bases. This work proposes a complementary, constructive classification based instead on the asymptotic limit profile encoded by the pair $(\liminf a_n, \limsup a_n)$. We demonstrate that this perspective naturally partitions $Seq(\mathbb{R})$ into seven mutually disjoint macroscale blocks, covering behaviors from finite convergence to bounded and unbounded oscillation. For each block, we provide explicit closed-form representative sequences and establish that every constituent class possesses the cardinality of the continuum. Furthermore, we investigate the structural relationships between these blocks at two distinct levels of granularity. At the macroscale, we employ injective mappings to define an idealized connectivity graph, while at the microscale, we introduce a connection relation governed by the Hadamard (pointwise) product. This dual analysis reveals a rich directed graph structure where the block of finite convergent sequences functions as a global attractor with no outgoing connections. Statistical comparisons between the idealized and realized adjacency matrices indicate that the pointwise product structure realizes approximately two-thirds of the theoretically possible macroscale relations. Ultimately, this partition-based framework endows the seemingly chaotic space $Seq(\mathbb{R})$ with a transparent, geometrically interpretable internal structure.


翻译:所有实值序列构成的序列空间,记作 $Seq(\\mathbb{R})$,通常通过无限维向量空间的视角进行研究,利用 Banach 空间范数或 Schauder 基。本文提出了一种互补的、基于由 $\\liminf a_n$ 和 $\\limsup a_n$ 编码的渐近极限剖面的构造性分类。我们证明,这一视角自然地将 $Seq(\\mathbb{R})$ 划分为七个互不相交的宏观尺度块,覆盖了从有限收敛到有界及无界振荡的行为。对于每个块,我们提供了显式的闭式代表序列,并证明每个构成类都具有连续统的基数。此外,我们在两个不同的粒度层次上研究了这些块之间的结构关系。在宏观尺度上,我们采用单射映射来定义理想化的连通图;而在微观尺度上,我们引入了由 Hadamard(逐点)积控制的连接关系。这种双重分析揭示了一个丰富的有向图结构,其中有限收敛序列块作为全局吸引子,没有外向连接。理想化与实现的邻接矩阵之间的统计比较表明,逐点积结构实现了约三分之二理论上可能的宏观尺度关系。最终,这种基于划分的框架为看似混沌的空间 $Seq(\\mathbb{R})$ 赋予了透明且几何可解释的内部结构。

0
下载
关闭预览

相关内容

数学上,序列是被排成一列的对象(或事件);这样每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
NeurIPS 2021 Spotlight | 针对有缺失坐标的聚类问题的核心集
专知会员服务
16+阅读 · 2021年11月27日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
33+阅读 · 2021年6月24日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
【NeurIPS2019】图变换网络:Graph Transformer Network
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
A Survey of Large Language Models
Arxiv
495+阅读 · 2023年3月31日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
NeurIPS 2021 Spotlight | 针对有缺失坐标的聚类问题的核心集
专知会员服务
16+阅读 · 2021年11月27日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
33+阅读 · 2021年6月24日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
【NeurIPS2019】图变换网络:Graph Transformer Network
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员