Despite its massive popularity as a programming language, especially in novel domains like data science programs, there is comparatively little research about fault localization that targets Python. Even though it is plausible that several findings about programming languages like C/C++ and Java -- the most common choices for fault localization research -- carry over to other languages, whether the dynamic nature of Python and how the language is used in practice affect the capabilities of classic fault localization approaches remain open questions to investigate. This paper is the first large-scale empirical study of fault localization on real-world Python programs and faults. Using Zou et al.'s recent large-scale empirical study of fault localization in Java as the basis of our study, we investigated the effectiveness (i.e., localization accuracy), efficiency (i.e., runtime performance), and other features (e.g., different entity granularities) of seven well-known fault-localization techniques in four families (spectrum-based, mutation-based, predicate switching, and stack-trace based) on 135 faults from 13 open-source Python projects from the BugsInPy curated collection. The results replicate for Python several results known about Java, and shed light on whether Python's peculiarities affect the capabilities of fault localization. The replication package that accompanies this paper includes detailed data about our experiments, as well as the tool FauxPy that we implemented to conduct the study.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Python是一种面向对象的解释型计算机程序设计语言,在设计中注重代码的可读性,同时也是一种功能强大的通用型语言。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年7月19日
Arxiv
13+阅读 · 2022年4月30日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员