Economically responsible mitigation of multivariate extreme risks -- extreme rainfall in a large area, huge variations of many stock prices, widespread breakdowns in transportation systems -- requires estimates of the probabilities that such risks will materialize in the future. This paper develops a new method, Wasserstein--Aitchison Generative Adversarial Networks (WA-GAN) to, which provides simulated values of $d$-dimensional multivariate extreme events and which can hence be used to give estimates of such probabilities. The main hypothesis is that, after transforming the observations to the unit-Pareto scale, their distribution is regularly varying in the sense that the distributions of their radial and angular components (with respect to the $L_1$-norm) converge and become asymptotically independent as the radius gets large. The method is a combination of standard extreme value analysis modeling of the tails of the marginal distributions with nonparametric GAN modeling of the angular distribution. For the latter, the angular values are transformed to Aitchison coordinates in a full $(d-1)$-dimensional linear space, and a Wasserstein GAN is trained on these coordinates and used to generate new values. A reverse transformation is then applied to these values and gives simulated values on the original data scale. Our method is applied to simulated data and to a financial data set from the Kenneth French Data Library. The method shows good performance compared to other existing methods in the literature, both in terms of capturing the dependence structure of the extremes in the data and in generating accurate new extremes.


翻译:对多元极端风险(如大范围极端降雨、多股票价格剧烈波动、交通系统大规模瘫痪)进行经济合理的缓解,需要预估此类风险未来发生的概率。本文提出一种新方法——Wasserstein-Aitchison生成对抗网络(WA-GAN),该方法可生成d维多元极端事件的模拟值,从而用于估计此类概率。核心假设是:将观测值转换至单位帕累托尺度后,其分布具有正则变差特性,即其径向分量与角分量(基于L1范数)的分布在半径趋大时收敛且渐近独立。该方法结合了边缘分布尾部的标准极值分析建模与角分布的非参数GAN建模。对于后者,角值被转换为完整(d-1)维线性空间中的Aitchison坐标,随后在此坐标上训练Wasserstein GAN并用于生成新值。通过对这些值进行逆变换,可获得原始数据尺度上的模拟值。我们将该方法应用于模拟数据及Kenneth French金融数据库中的实际数据集。与文献中现有方法相比,该方法在捕捉数据极端值依赖结构及生成精确新极端值方面均表现出优越性能。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
48+阅读 · 2023年4月16日
专知会员服务
27+阅读 · 2021年9月10日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS 2020】核基渐进蒸馏加法器神经网络
专知
13+阅读 · 2020年10月19日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
48+阅读 · 2023年4月16日
专知会员服务
27+阅读 · 2021年9月10日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS 2020】核基渐进蒸馏加法器神经网络
专知
13+阅读 · 2020年10月19日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员