Transition states (TSs) are crucial for understanding reaction mechanisms, yet their exploration is limited by the complexity of experimental and computational approaches. Here we propose TS-DFM, a flow matching framework that predicts TSs from reactants and products. By operating in molecular distance geometry space, TS-DFM explicitly captures the dynamic changes of interatomic distances in chemical reactions. A network structure named TSDVNet is designed to learn the velocity field for generating TS geometries accurately. On the benchmark dataset Transition1X, TS-DFM outperforms the previous state-of-the-art method React-OT by 30\% in structural accuracy. These predicted TSs provide high-quality initial structures, accelerating the convergence of CI-NEB optimization. Additionally, TS-DFM can identify alternative reaction paths. In our experiments, even a more favorable TS with lower energy barrier is discovered. Further tests on RGD1 dataset confirm its strong generalization ability on unseen molecules and reaction types, highlighting its potential for facilitating reaction exploration.
翻译:过渡态(TSs)对于理解反应机制至关重要,但其探索受限于实验和计算方法的复杂性。本文提出TS-DFM,一种基于流匹配的框架,用于从反应物和产物预测过渡态。通过在分子距离几何空间中操作,TS-DFM能够显式地捕捉化学反应中原子间距离的动态变化。我们设计了名为TSDVNet的网络结构,用于学习生成精确过渡态几何构型的速度场。在基准数据集Transition1X上,TS-DFM在结构准确性方面比先前最先进的方法React-OT提升了30%。这些预测的过渡态提供了高质量的初始结构,加速了CI-NEB优化的收敛。此外,TS-DFM能够识别替代反应路径。在我们的实验中,甚至发现了具有更低能垒的更有利过渡态。在RGD1数据集上的进一步测试证实了其对未见分子和反应类型的强大泛化能力,突显了其在促进反应探索方面的潜力。