Learning agent behaviors from observational data has shown to improve our understanding of their decision-making processes, advancing our ability to explain their interactions with the environment and other agents. While multiple learning techniques have been proposed in the literature, there is one particular setting that has not been explored yet: multi agent systems where agent identities remain anonymous. For instance, in financial markets labeled data that identifies market participant strategies is typically proprietary, and only the anonymous state-action pairs that result from the interaction of multiple market participants are publicly available. As a result, sequences of agent actions are not observable, restricting the applicability of existing work. In this paper, we propose a Policy Clustering algorithm, called K-SHAP, that learns to group anonymous state-action pairs according to the agent policies. We frame the problem as an Imitation Learning (IL) task, and we learn a world-policy able to mimic all the agent behaviors upon different environmental states. We leverage the world-policy to explain each anonymous observation through an additive feature attribution method called SHAP (SHapley Additive exPlanations). Finally, by clustering the explanations we show that we are able to identify different agent policies and group observations accordingly. We evaluate our approach on simulated synthetic market data and a real-world financial dataset. We show that our proposal significantly and consistently outperforms the existing methods, identifying different agent strategies.


翻译:摘要:从观测数据中学习智能体行为,可以提高我们理解他们的决策过程,推进我们解释他们与环境和其他智能体的交互的能力。虽然文献中已提出了多种学习技术,但尚未探索具有一个特殊环境的多智能体系统,即智能体身份仍然匿名的情况。例如,金融市场中标记数据用于标识市场参与者策略通常是专有的,只有由多个市场参与者交互产生的匿名状态-动作对是公开的。因此,智能体动作序列不可观测,限制了现有工作的适用性。在本文中,我们提出了一种称为 K-SHAP 的策略聚类算法,它能够根据智能体策略将匿名状态-动作对分组。我们将该问题作为模仿学习(IL)任务,并学习一个能够模仿不同环境状态下所有智能体行为的世界策略。我们利用该世界策略通过一种名为 SHAP(Shapley Additive Explanations)的加性特征归因方法来解释每个匿名观测。最后,通过聚类解释,我们展示了能够识别不同智能体策略并相应地对观测进行分组的能力。我们在模拟的合成市场数据和真实的金融数据集上评估了我们的方法。我们证明了我们的方法明显且一致地优于现有方法,识别不同的智能体策略。

0
下载
关闭预览

相关内容

智能体,顾名思义,就是具有智能的实体,英文名是Agent。
【CTH博士论文】基于强化学习的自动驾驶决策,149页pdf
专知会员服务
54+阅读 · 2023年2月18日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
29+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
13+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关VIP内容
【CTH博士论文】基于强化学习的自动驾驶决策,149页pdf
专知会员服务
54+阅读 · 2023年2月18日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
29+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
13+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员