We propose an enhanced physics-informed neural network (PINN), the Trace Regularity Physics-Informed Neural Network (TRPINN), which enforces the boundary loss in the Sobolev-Slobodeckij norm $H^{1/2}(\partial Ω)$, the correct trace space associated with $H^1(Ω)$. We reduce computational cost by computing only the theoretically essential portion of the semi-norm and enhance convergence stability by avoiding denominator evaluations in the discretization. By incorporating the exact $H^{1/2}(\partial Ω)$ norm, we show that the approximation converges to the true solution in the $H^{1}(Ω)$ sense, and, through Neural Tangent Kernel (NTK) analysis, we demonstrate that TRPINN can converge faster than standard PINNs. Numerical experiments on the Laplace equation with highly oscillatory Dirichlet boundary conditions exhibit cases where TRPINN succeeds even when standard PINNs fail, and show performance improvements of one to three decimal digits.
翻译:我们提出了一种增强型物理信息神经网络(PINN),即迹正则性物理信息神经网络(TRPINN),该网络在Sobolev-Slobodeckij范数 $H^{1/2}(\partial Ω)$ 中强制边界损失,这是与 $H^1(Ω)$ 相关联的正确迹空间。通过仅计算半范数的理论必要部分,我们降低了计算成本,并通过避免离散化中的分母求值来增强收敛稳定性。通过引入精确的 $H^{1/2}(\partial Ω)$ 范数,我们证明了近似解在 $H^{1}(Ω)$ 意义上收敛到真实解,并且通过神经正切核(NTK)分析,我们展示了TRPINN可以比标准PINNs收敛得更快。在具有高度振荡Dirichlet边界条件的Laplace方程上的数值实验表明,TRPINN在标准PINNs失败的情况下仍能成功求解,并显示出性能提升一到三个数量级。