Large language models (LLMs) offer promising capabilities for interpreting multivariate time-series data, yet their application to real-world battery energy storage system (BESS) operation and maintenance remains largely unexplored. Here, we present TimeSeries2Report (TS2R), a prompting framework that converts raw lithium-ion battery operational time-series into structured, semantically enriched reports, enabling LLMs to reason, predict, and make decisions in BESS management scenarios. TS2R encodes short-term temporal dynamics into natural language through a combination of segmentation, semantic abstraction, and rule-based interpretation, effectively bridging low-level sensor signals with high-level contextual insights. We benchmark TS2R across both lab-scale and real-world datasets, evaluating report quality and downstream task performance in anomaly detection, state-of-charge prediction, and charging/discharging management. Compared with vision-, embedding-, and text-based prompting baselines, report-based prompting via TS2R consistently improves LLM performance in terms of across accuracy, robustness, and explainability metrics. Notably, TS2R-integrated LLMs achieve expert-level decision quality and predictive consistency without retraining or architecture modification, establishing a practical path for adaptive, LLM-driven battery intelligence.
翻译:大语言模型(LLMs)在解释多元时间序列数据方面展现出潜力,但其在真实电池储能系统(BESS)运维中的应用仍鲜有探索。本文提出TimeSeries2Report(TS2R)提示框架,该框架将锂离子电池原始运行时间序列转换为结构化、语义增强的报告,使LLMs能够在BESS管理场景中进行推理、预测与决策。TS2R通过分段、语义抽象和基于规则的解读相结合,将短期时序动态编码为自然语言,有效连接低层传感器信号与高层情境洞察。我们在实验室规模及真实数据集上对TS2R进行基准测试,评估其在异常检测、荷电状态预测及充放电管理等下游任务中的报告质量与性能表现。相较于基于视觉、嵌入和文本的提示基线方法,通过TS2R生成的报告提示持续提升了LLMs在准确性、鲁棒性和可解释性指标上的综合表现。值得注意的是,集成TS2R的LLMs无需重新训练或修改架构即可实现专家级决策质量与预测一致性,为自适应、LLM驱动的电池智能管理提供了可行路径。