This paper introduces a novel closed-loop testing methodology for efficient linearity testing of high-resolution Successive Approximation Register (SAR) Analog-to-Digital Converters (ADCs). Existing test strategies, including histogram-based approaches, sine wave testing, and model-driven reconstruction, often rely on dense data acquisition followed by offline post-processing, which increases overall test time and complexity. To overcome these limitations, we propose an adaptive approach that utilizes an iterative behavioral model refined by an Extended Kalman Filter (EKF) in real time, enabling direct estimation of capacitor mismatch parameters that determine INL behavior. Our algorithm dynamically selects measurement points based on current model uncertainty, maximizing information gain with respect to parameter confidence and narrowing sampling intervals as estimation progresses. By providing immediate feedback and adaptive targeting, the proposed method eliminates the need for large-scale data collection and post-measurement analysis. Experimental results demonstrate substantial reductions in total test time and computational overhead, highlighting the method's suitability for integration in production environments.


翻译:本文提出了一种新颖的闭环测试方法,用于高效测试高分辨率逐次逼近寄存器(SAR)模数转换器(ADC)的线性度。现有测试策略,包括基于直方图的方法、正弦波测试和模型驱动重构,通常依赖于密集数据采集后进行离线后处理,这增加了总体测试时间和复杂性。为克服这些限制,我们提出了一种自适应方法,利用由扩展卡尔曼滤波器(EKF)实时优化的迭代行为模型,能够直接估计决定积分非线性(INL)行为的电容失配参数。我们的算法基于当前模型不确定性动态选择测量点,最大化参数置信度的信息增益,并在估计过程中逐步缩小采样间隔。通过提供即时反馈和自适应目标定位,所提方法无需大规模数据采集和测量后分析。实验结果表明,该方法显著减少了总测试时间和计算开销,凸显了其适用于生产环境集成的优势。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
【AAAI2023】基于Dirichlet元模型的事后不确定性学习
专知会员服务
16+阅读 · 2022年12月16日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员