We consider supervised learning problems in which set predictions provide explicit uncertainty estimates. Using Choquet integrals (a.k.a. Lov{á}sz extensions), we propose a convex loss function for nondecreasing subset-valued functions obtained as level sets of a real-valued function. This loss function allows optimal trade-offs between conditional probabilistic coverage and the ''size'' of the set, measured by a non-decreasing submodular function. We also propose several extensions that mimic loss functions and criteria for binary classification with asymmetric losses, and show how to naturally obtain sets with optimized conditional coverage. We derive efficient optimization algorithms, either based on stochastic gradient descent or reweighted least-squares formulations, and illustrate our findings with a series of experiments on synthetic datasets for classification and regression tasks, showing improvements over approaches that aim for marginal coverage.
翻译:本文研究监督学习问题,其中集合预测能提供显式的不确定性估计。利用Choquet积分(亦称Lovász扩展),我们针对通过实值函数水平集获得的非递减子集值函数,提出了一种凸损失函数。该损失函数能够在条件概率覆盖与集合"规模"(通过非递减子模函数度量)之间实现最优权衡。我们还提出了若干扩展方案,以模拟具有非对称损失的二分类问题中的损失函数与评估准则,并展示了如何自然地获得具有优化条件覆盖的集合。我们推导出基于随机梯度下降或重加权最小二乘公式的高效优化算法,通过在分类和回归任务的合成数据集上进行系列实验验证了所提方法的有效性,实验结果表明该方法相较于追求边缘覆盖的方法具有显著改进。