Community structure in social and collaborative networks often emerges from a complex interplay between structural mechanisms, such as degree heterogeneity and leader-driven attraction, and homophily on node attributes. Existing community detection methods typically focus on these dimensions in isolation, limiting their ability to recover interpretable communities in presence of such mechanisms. In this paper, we propose AttDeCoDe, an attribute-driven extension of a density-based community detection framework, developed to analyse networks where node characteristics play a central role in group formation. Instead of defining density purely from network topology, AttDeCoDe estimates node-wise density in the attribute space, allowing communities to form around attribute-based community representatives while preserving structural connectivity constraints. This approach naturally captures homophily-driven aggregation while remaining sensitive to leader influence. We evaluate the proposed method through a simulation study based on a novel generative model that extends the degree-corrected stochastic block model by incorporating attribute-driven leader attraction, reflecting key features of collaborative research networks. We perform an empirical application to research collaboration data from the Horizon programmes, where organisations are characterised by project-level thematic descriptors. Both results show that AttDeCoDe offers a flexible and interpretable framework for community detection in attributed networks achieving competitive performance relative to topology-based and attribute-assisted benchmarks.


翻译:社交与协作网络中的社区结构通常源于结构机制(如度异质性和领导者驱动吸引力)与节点属性同质性之间复杂的相互作用。现有的社区检测方法通常孤立地关注这些维度,限制了其在存在此类机制时恢复可解释社区的能力。本文提出AttDeCoDe——一种基于密度的社区检测框架的属性驱动扩展,该框架专为分析节点特征在群体形成中起核心作用的网络而开发。AttDeCoDe并非纯粹从网络拓扑定义密度,而是在属性空间中估计节点级密度,使得社区能够围绕基于属性的社区代表形成,同时保持结构连通性约束。该方法自然地捕捉了同质性驱动的聚合,同时对领导者影响保持敏感。我们通过基于新型生成模型的模拟研究评估所提出的方法,该模型通过纳入属性驱动的领导者吸引力扩展了度校正随机块模型,反映了协作研究网络的关键特征。我们将该方法应用于"地平线"计划的研究协作数据,其中组织通过项目级主题描述符进行表征。两项结果均表明,AttDeCoDe为属性网络中的社区检测提供了一个灵活且可解释的框架,相较于基于拓扑和属性辅助的基准方法实现了具有竞争力的性能。

0
下载
关闭预览

相关内容

一个具体事物,总是有许许多多的性质与关系,我们把一个事物的性质与关系,都叫作事物的属性。 事物与属性是不可分的,事物都是有属性的事物,属性也都是事物的属性。 一个事物与另一个事物的相同或相异,也就是一个事物的属性与另一事物的属性的相同或相异。 由于事物属性的相同或相异,客观世界中就形成了许多不同的事物类。具有相同属性的事物就形成一类,具有不同属性的事物就分别地形成不同的类。
【AAAI2023】面向领域自适应语义分割的几何感知网络
专知会员服务
21+阅读 · 2022年12月7日
专知会员服务
27+阅读 · 2021年9月10日
【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
27+阅读 · 2020年11月14日
专知会员服务
24+阅读 · 2020年9月15日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
直白介绍卷积神经网络(CNN)
算法与数学之美
13+阅读 · 2019年1月23日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关VIP内容
【AAAI2023】面向领域自适应语义分割的几何感知网络
专知会员服务
21+阅读 · 2022年12月7日
专知会员服务
27+阅读 · 2021年9月10日
【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
27+阅读 · 2020年11月14日
专知会员服务
24+阅读 · 2020年9月15日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
直白介绍卷积神经网络(CNN)
算法与数学之美
13+阅读 · 2019年1月23日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员