Structural equation modeling (SEM) describes directed dependence and feedback, whereas non-negative matrix factorization (NMF) provides interpretable, parts-based representations for non-negative data. We propose NMF-SEM, a unified non-negative framework that embeds NMF within a simultaneous-equation structure, enabling latent feedback loops and a reduced-form input-output mapping when intermediate flows are unobserved. The mapping separates direct effects from cumulative propagation effects and summarizes reinforcement using an amplification ratio. We develop regularized multiplicative-update estimation with orthogonality and sparsity penalties, and introduce structural evaluation metrics for input-output fidelity, second-moment (covariance-like) agreement, and feedback strength. Applications show that NMF-SEM recovers the classical three-factor structure in the Holzinger-Swineford data, identifies climate- and pollutant-driven mortality pathways with negligible feedback in the Los Angeles system, and separates deprivation, general morbidity, and deaths-of-despair components with weak feedback in Mississippi health outcomes.


翻译:结构方程建模(SEM)描述有向依赖与反馈,而非负矩阵分解(NMF)则为非负数据提供可解释的、基于部分的表示。我们提出NMF-SEM,一个统一的非负框架,将NMF嵌入联立方程结构中,从而在中间流未被观测时实现潜在反馈环与简化形式的输入输出映射。该映射将直接效应与累积传播效应分离,并使用放大比总结强化作用。我们开发了带正交性与稀疏性惩罚的正则化乘性更新估计算法,并引入了用于评估输入输出保真度、二阶矩(类协方差)一致性及反馈强度的结构评价指标。应用表明,NMF-SEM在Holzinger-Swineford数据中恢复了经典的三因子结构,在洛杉矶系统中识别了气候与污染物驱动的死亡率路径(反馈可忽略),并在密西西比州健康结果中分离了剥夺、一般发病率与绝望死亡成分(反馈较弱)。

0
下载
关闭预览

相关内容

Top
微信扫码咨询专知VIP会员