We consider concurrent systems consisting of replicated finite-state processes that synchronize via joint interactions in a network with user-defined topology. The system is specified using a resource logic with a multiplicative connective and inductively defined predicates, reminiscent of Separation Logic. The problem we consider is if a given formula in this logic defines an invariant, namely whether any model of the formula, following an arbitrary firing sequence of interactions, is transformed into another model of the same formula. This property, called \emph{havoc invariance}, is quintessential in proving the correctness of reconfiguration programs that change the structure of the network at runtime. We show that the havoc invariance problem is many-one reducible to the entailment problem $\phi \models \psi$, asking if any model of $\phi$ is also a model of $\psi$. Although, in general, havoc invariance is found to be undecidable, this reduction allows to prove that havoc invariance is in 2EXP, for a general fragment of the logic, with a 2EXP entailment problem.


翻译:我们考虑的是由复制的有限状态进程组成的并行系统,这些系统通过与用户定义的表层的网络中共同互动而同步。这个系统使用一种资源逻辑来指定一个资源逻辑,它具有多复制的连接性和感应性定义的上游,与分离逻辑的相似性。我们考虑的问题是,这个逻辑中的一个特定公式是否定义了一个变量,即公式的任何模型,在任意的点火序列中,是否经过任意的相互作用,被转换成同一公式的另一种模型。这个属性被称为 emph{ha{ha{voc evilance},在证明改变运行时网络结构的重组程序是否正确时,是典型的。我们表明,在逻辑的一般碎片中,“破坏”问题是一个可以被复制的多一个问题 $\phi\ 模型\ psi $, 询问$\ propsi$ 的任何模型是否也是美元\psi 的模型。尽管一般情况下,“破坏”的变量被发现是不可量化的,但这种减少可以证明“破坏”在2EXP”中, 是一个逻辑的一般碎片。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员