This article focuses on the measurement and evolution modeling of Standardized Kalman filtering for brain activity estimation using non-invasive electroencephalography data. Here, we propose new parameter tuning and a model that uses the rate of change in the brain activity distribution to improve the stability of otherwise accurate estimates. Namely, we propose a backward-differentiation-based measurement model for the change rate, which notably improves the filtering-parametrization-stability of the tracking. Simulated data and data from a real subject were used in experiments.


翻译:本文聚焦于利用非侵入性脑电图数据进行脑活动估计的标准化卡尔曼滤波的测量与演化建模。在此,我们提出了一种新的参数调优方法及一个利用脑活动分布变化率的模型,旨在提升原本精确估计的稳定性。具体而言,我们提出了一种基于后向差分的变化率测量模型,该模型显著提升了追踪过程中滤波参数化的稳定性。实验中使用了模拟数据及真实受试者的数据。

0
下载
关闭预览

相关内容

144页ppt《扩散模型》,Google DeepMind Sander Dieleman
专知会员服务
48+阅读 · 11月21日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员