Structural Equation Modeling (SEM) provides a powerful and flexible framework widely used in behavioral genetics and social sciences. Building on the original design of the umx package, which enhanced accessibility to OpenMx using concise syntax and helpful defaults, umx v4.5 significantly extends functionality for longitudinal and causal twin designs while improving interoperability with graphical modelling tools such as Onyx. New capabilities include: classic and modern cross-lagged panel model; Mendelian Randomization Direction-of-Causation (MR-DoC) twin models incorporating polygenic scores as instruments; expanded support for definition variables directly in umxRAM(); streamlined workflows for importing paths from $Ω$nyx; a dedicated tool for analyzing censored variables, particularly valuable in biomarker research; improved covariate placeholder handling for definition variables; umxSexLim() for simplified sex-limitation modelling across five twin groups, accommodating quantitative and qualitative sex differences; and umx_residualize() for efficient covariate residualization in wide- or long-format data. These advances accelerate reproducible, reliable, publication-ready twin and family modelling using intelligent defaults, and integrated journal-quality reporting, thereby lowering barriers to genetic epidemiological analyzes.


翻译:结构方程建模(SEM)为行为遗传学和社会科学提供了一个强大且灵活的框架。基于 umx 包的原始设计——通过简洁的语法和实用的默认设置提升了对 OpenMx 的可访问性——umx v4.5 显著扩展了纵向与因果双生子设计的功能,同时增强了与 Onyx 等图形建模工具的互操作性。新增功能包括:经典与现代交叉滞后面板模型;整合多基因评分作为工具的孟德尔随机化因果方向(MR-DoC)双生子模型;在 umxRAM() 中直接扩展对定义变量的支持;从 $Ω$nyx 导入路径的简化工作流;专用于分析删失变量的工具,在生物标志物研究中尤其有价值;改进的定义变量协变量占位符处理;umxSexLim() 用于简化跨五个双生子组的性别限制建模,适应定量与定性的性别差异;以及 umx_residualize() 用于在宽格式或长格式数据中高效进行协变量残差化。这些进展通过智能默认设置和集成的期刊质量报告,加速了可重复、可靠、可直接用于发表的双生子与家庭建模,从而降低了遗传流行病学分析的壁垒。

0
下载
关闭预览

相关内容

 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
48+阅读 · 2023年4月16日
《用于代码弱点识别的 LLVM 中间表示》CMU
专知会员服务
14+阅读 · 2022年12月12日
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey of Large Language Models
Arxiv
495+阅读 · 2023年3月31日
VIP会员
相关资讯
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员