The Hausman specification test detects inconsistency of the random-effects estimator by comparing it with an alternative fixed-effects estimator. This note shows how a recently proposed bias diagnostic for linear mixed models can complement this test in random-effects panel-data applications. The diagnostic delivers parameter-specific internal estimates of finite-sample bias of the random-effects estimator, together with permutation-based $p$-values, from a single fitted random-effects model. We illustrate its use in a gasoline-demand panel and in a value-added model for teacher evaluation, using publicly available R packages, and we discuss how the resulting bias summaries can be incorporated into routine practice.
翻译:Hausman 设定检验通过比较随机效应估计量与替代的固定效应估计量来检测前者不一致性。本文说明线性混合模型中最新提出的偏差诊断方法如何能在随机效应面板数据应用中补充该检验。该诊断方法可从单一拟合的随机效应模型中,提供随机效应估计量有限样本偏差的参数特定内部估计值,以及基于置换的 $p$ 值。我们通过公开可用的 R 软件包,在汽油需求面板数据和教师评价增值模型中演示其应用,并讨论如何将所得的偏差汇总纳入常规实践。