Much algorithmic research in NLP aims to efficiently manipulate rich formal structures. An algorithm designer typically seeks to provide guarantees about their proposed algorithm -- for example, that its running time or space complexity is upper-bounded as a certain function of its input size. They may also wish to determine the necessary properties of the quantities derived by the algorithm to synthesize efficient data structures and verify type errors. In this paper, we develop a system for helping programmers to perform these types of analyses. We apply our system to a number of NLP algorithms and find that it successfully infers types, dead and redundant code, and parametric runtime and space complexity bounds.


翻译:自然语言处理领域的许多算法研究旨在高效处理丰富的形式化结构。算法设计者通常希望为其提出的算法提供性能保证——例如,其运行时间或空间复杂度存在基于输入规模的特定上界函数。他们可能还希望确定算法所推导量的必要性质,以合成高效数据结构并验证类型错误。本文开发了一个辅助程序员执行此类分析的系统。我们将该系统应用于多个自然语言处理算法,发现其能成功推断类型、无效及冗余代码,以及参数化的运行时与空间复杂度边界。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员