Scientific simulations and experimental measurements produce vast amounts of spatio-temporal data, yet extracting meaningful insights remains challenging due to high dimensionality, complex structures, and missing information. Traditional analysis methods often struggle with these issues, motivating the need for more robust, data-driven approaches. This dissertation explores deep learning methodologies to improve the analysis and visualization of spatio-temporal scientific ensembles, focusing on dimensionality reduction, flow estimation, and temporal interpolation. First, we address high-dimensional data representation through autoencoder-based dimensionality reduction for scientific ensembles. We evaluate the stability of projection metrics under partial labeling and introduce a Pareto-efficient selection strategy to identify optimal autoencoder variants, ensuring expressive and reliable low-dimensional embeddings. Next, we present FLINT, a deep learning model for high-quality flow estimation and temporal interpolation in both flow-supervised and flow-unsupervised settings. FLINT reconstructs missing velocity fields and generates high-fidelity temporal interpolants for scalar fields across 2D+time and 3D+time ensembles without domain-specific assumptions or extensive finetuning. To further improve adaptability and generalization, we introduce HyperFLINT, a hypernetwork-based approach that conditions on simulation parameters to estimate flow fields and interpolate scalar data. This parameter-aware adaptation yields more accurate reconstructions across diverse scientific domains, even with sparse or incomplete data. Overall, this dissertation advances deep learning techniques for scientific visualization, providing scalable, adaptable, and high-quality solutions for interpreting complex spatio-temporal ensembles.
翻译:科学模拟与实验测量产生海量时空数据,然而由于高维度、复杂结构及信息缺失等问题,从中提取有意义的洞见仍具挑战性。传统分析方法常难以应对这些挑战,这推动了对更鲁棒、数据驱动方法的需求。本论文探索深度学习方法来改进时空科学集成数据的分析与可视化,重点关注降维、流场估计与时间插值。首先,我们通过基于自编码器的降维方法处理科学集成数据的高维表示问题。我们评估了部分标注条件下投影指标的稳定性,并引入帕累托最优选择策略以识别最佳自编码器变体,从而确保表达性强且可靠的低维嵌入。其次,我们提出FLINT模型——一种在流场监督与无监督设置下均能实现高质量流场估计与时间插值的深度学习模型。FLINT能够重建缺失的速度场,并为二维+时间与三维+时间集成中的标量场生成高保真时间插值,且无需领域特定假设或大量微调。为进一步提升适应性与泛化能力,我们提出HyperFLINT方法,这是一种基于超网络、以模拟参数为条件来估计流场并插值标量数据的方法。这种参数感知的自适应机制能在不同科学领域中实现更精确的重建,即使面对稀疏或不完整数据。总体而言,本论文推进了面向科学可视化的深度学习技术,为解读复杂时空集成数据提供了可扩展、自适应且高质量的解决方案。