In this work, we perform a simulation-based forecasting analysis to compare the constraining power of two higher-order summary statistics of the large-scale structure (LSS), the Minkowski Functionals (MFs) and the Conditional Moments of Derivative (CMD), with a particular focus on their sensitivity to nonlinear and anisotropic features in redshift-space. Our analysis relies on halo catalogs from the Big Sobol Sequence(BSQ) simulations at redshift $z=0.5$, employing a likelihood-free inference framework implemented via neural posterior estimation. At the fiducial cosmology of the Quijote simulations $(\Omega_{m}=0.3175,\,\sigma_{8}=0.834)$, and for the smoothing scale $R=15\,h^{-1}$Mpc, we find that the CMD yields tighter forecasts for $(\Omega_{m}},\,\sigma_{8})$ than the zeroth- to third-order MFs components, improving the constraint precision by ${\sim}(44\%,\,52\%)$, ${\sim}(30\%,\,45\%)$, ${\sim}(27\%,\,17\%)$, and ${\sim}(26\%,\,17\%)$, respectively. A joint configuration combining the MFs and CMD further enhances the precision by approximately ${\sim}27\%$ compared to the standard MFs alone, highlighting the complementary anisotropy-sensitive information captured by the CMD in contrast to the scalar morphological content encapsulated by the MFs. We further extend the forecasting analysis to a continuous range of cosmological parameter values and multiple smoothing scales. Our results show that, although the absolute forecast uncertainty for each component of summary statistics depends on the underlying parameter values and the adopted smoothing scale, the relative constraining power among the summary statistics remains nearly constant throughout.
翻译:在本工作中,我们通过基于模拟的预测分析,比较了大尺度结构(LSS)的两个高阶汇总统计量——闵可夫斯基泛函(MFs)与导数条件矩(CMD)的约束能力,特别关注它们对红移空间中非线性与各向异性特征的敏感性。分析基于红移$z=0.5$处的大索博尔序列(BSQ)模拟的晕星表,采用通过神经后验估计实现的无似然推断框架。在Quijote模拟的基准宇宙学参数$(\Omega_{m}=0.3175,\,\sigma_{8}=0.834)$及平滑尺度$R=15\,h^{-1}$Mpc条件下,我们发现CMD对$(\Omega_{m},\,\sigma_{8})$的预测约束比零阶至三阶MFs分量更紧,约束精度分别提升约${\sim}(44\%,\,52\%)$、${\sim}(30\%,\,45\%)$、${\sim}(27\%,\,17\%)$和${\sim}(26\%,\,17\%)$。联合MFs与CMD的配置进一步将精度较单独使用标准MFs提升约${\sim}27\%$,突显了CMD所捕获的、与MFs所封装的标量形态学内容形成互补的各向异性敏感信息。我们将预测分析进一步扩展至宇宙学参数值的连续范围及多个平滑尺度。结果表明,尽管各汇总统计量分量的绝对预测不确定度依赖于底层参数值及所采用的平滑尺度,但各统计量间的相对约束能力在整个参数范围内几乎保持恒定。