Grain Growth strongly influences the mechanical behavior of materials, making its prediction a key objective in microstructural engineering. In this study, several deep learning approaches were evaluated, including recurrent neural networks (RNN), long short-term memory (LSTM), temporal convolutional networks (TCN), and transformers, to forecast grain size distributions during grain growth. Unlike full-field simulations, which are computationally demanding, the present work relies on mean-field statistical descriptors extracted from high-fidelity simulations. A dataset of 120 grain growth sequences was processed into normalized grain size distributions as a function of time. The models were trained to predict future distributions from a short temporal history using a recursive forecasting strategy. Among the tested models, the LSTM network achieved the highest accuracy (above 90\%) and the most stable performance, maintaining physically consistent predictions over extended horizons while reducing computation time from about 20 minutes per sequence to only a few seconds, whereas the other architectures tended to diverge when forecasting further in time. These results highlight the potential of low-dimensional descriptors and LSTM-based forecasting for efficient and accurate microstructure prediction, with direct implications for digital twin development and process optimization.


翻译:晶粒生长强烈影响材料的力学行为,使其预测成为微结构工程的关键目标。本研究评估了多种深度学习方法,包括循环神经网络(RNN)、长短期记忆网络(LSTM)、时间卷积网络(TCN)和Transformer,以预测晶粒生长过程中的晶粒尺寸分布。与计算量大的全场模拟不同,本工作基于从高保真模拟中提取的平均场统计描述符。将120个晶粒生长序列的数据集处理为随时间变化的归一化晶粒尺寸分布。模型通过递归预测策略,利用短时间历史数据训练以预测未来分布。在测试模型中,LSTM网络取得了最高准确率(超过90%)和最稳定的性能,在延长预测范围内保持物理一致的预测,同时将每个序列的计算时间从约20分钟减少至仅几秒,而其他架构在长时间预测时倾向于发散。这些结果凸显了低维描述符和基于LSTM的预测在高效准确微结构预测方面的潜力,对数字孪生开发和工艺优化具有直接意义。

0
下载
关闭预览

相关内容

数学上,序列是被排成一列的对象(或事件);这样每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
24+阅读 · 2022年2月27日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员