We introduce a flexible framework for modeling dependent feature allocations. Our approach addresses limitations in traditional nonparametric methods by directly modeling the logit-probability surface of the feature paintbox, enabling the explicit incorporation of covariates and complex but tractable dependence structures. The core of our model is a Gaussian Markov Random Field (GMRF), which we use to robustly decompose the latent field, separating a structural component based on the baseline covariates from intrinsic, unstructured heterogeneity. This structure is not a rigid grid but a sparse k-nearest neighbors graph derived from the latent geometry in the data, ensuring high-dimensional tractability. We extend this framework to a dynamic spatio-temporal process, allowing item effects to evolve via an Ornstein-Uhlenbeck process. Feature correlations are captured using a low-rank factorization of their joint prior. We demonstrate our model's utility by applying it to a polypharmacy dataset, successfully inferring latent health conditions from patient drug profiles.
翻译:我们提出了一种用于建模依赖特征分配的灵活框架。该方法通过直接建模特征画箱的对数几率概率曲面,克服了传统非参数方法的局限性,能够显式地纳入协变量及复杂但可处理的依赖结构。模型的核心是高斯马尔可夫随机场,我们利用其稳健地分解潜在场,将基于基线协变量的结构成分与固有的非结构化异质性分离开来。该结构并非刚性网格,而是从数据潜在几何中导出的稀疏k近邻图,从而确保高维可处理性。我们将此框架扩展至动态时空过程,允许项目效应通过奥恩斯坦-乌伦贝克过程演化。特征相关性通过其联合先验的低秩分解进行捕捉。通过将模型应用于多重用药数据集,我们成功从患者用药档案中推断出潜在健康状况,从而验证了该模型的实用性。