Geoffrey Hinton,被称为“神经网络之父”、“深度学习鼻祖”,他曾获得爱丁堡大学人工智能的博士学位,并且为多伦多大学的特聘教授。在2012年,Hinton还获得了加拿大基廉奖(Killam Prizes,有“加拿大诺贝尔奖”之称的国家最高科学奖)。2013年,Hinton 加入谷歌并带领一个AI团队,他将神经网络带入到研究与应用的热潮,将“深度学习”从边缘课题变成了谷歌等互联网巨头仰赖的核心技术,并将反向传播算法应用到神经网络与深度学习。





Capsules are the name given by Geoffrey Hinton to vector-valued neurons. Neural networks traditionally produce a scalar value for an activated neuron. Capsules, on the other hand, produce a vector of values, which Hinton argues correspond to a single, composite feature wherein the values of the components of the vectors indicate properties of the feature such as transformation or contrast. We present a new way of parameterizing and training capsules that we refer to as homogeneous vector capsules (HVCs). We demonstrate, experimentally, that altering a convolutional neural network (CNN) to use HVCs can achieve superior classification accuracy without increasing the number of parameters or operations in its architecture as compared to a CNN using a single final fully connected layer. Additionally, the introduction of HVCs enables the use of adaptive gradient descent, reducing the dependence a model's achievable accuracy has on the finely tuned hyperparameters of a non-adaptive optimizer. We demonstrate our method and results using two neural network architectures. First, a very simple monolithic CNN that when using HVCs achieved a 63% improvement in top-1 classification accuracy and a 35% improvement in top-5 classification accuracy over the baseline architecture. Second, with the CNN architecture referred to as Inception v3 that achieved similar accuracies both with and without HVCs. Additionally, the simple monolithic CNN when using HVCs showed no overfitting after more than 300 epochs whereas the baseline showed overfitting after 30 epochs. We use the ImageNet ILSVRC 2012 classification challenge dataset with both networks.