信息抽取 (Information Extraction: IE)是把文本里包含的信息进行结构化处理,变成表格一样的组织形式。输入信息抽取系统的是原始文本,输出的是固定格式的信息点。信息点从各种各样的文档中被抽取出来,然后以统一的形式集成在一起。这就是信息抽取的主要任务。信息以统一的形式集成在一起的好处是方便检查和比较。 信息抽取技术并不试图全面理解整篇文档,只是对文档中包含相关信息的部分进行分析。至于哪些信息是相关的,那将由系统设计时定下的领域范围而定。

VIP内容

随着网络空间安全情报在网络犯罪、网络战和网络反恐等领域的作用日益凸显,迫切需要对网络空间安全情报的基本理论和综合分析方法进行深入研究。当前,安全情报在实际应用中主要面临着数据类型多样、分布离散、内容不一致等问题,因此引入知识图谱技术框架,旨在利用知识图谱面向海量数据时信息收集及加工整合的思想,提高安全情报的收集效率、情报质量,同时拓展情报的使用范围。本文首先简要回顾安全情报和知识图谱的研究现状,同时介绍知识图谱在安全领域的应用。其次给出面向安全情报的知识图谱构建框架。然后介绍安全情报知识图谱构建的关键技术,包括信息抽取、本体构建和知识推理等。最后,对安全情报知识图谱发展面临的问题进行了讨论。

http://jcs.iie.ac.cn/xxaqxb/ch/reader/view_abstract.aspx?file_no=20200505&flag=1

成为VIP会员查看完整内容
0
27

最新内容

Conversational interfaces to Business Intelligence (BI) applications enable data analysis using a natural language dialog in small incremental steps. To truly unleash the power of conversational BI to democratize access to data, a system needs to provide effective and continuous support for data analysis. In this paper, we propose BI-REC, a conversational recommendation system for BI applications to help users accomplish their data analysis tasks. We define the space of data analysis in terms of BI patterns, augmented with rich semantic information extracted from the OLAP cube definition, and use graph embeddings learned using GraphSAGE to create a compact representation of the analysis state. We propose a two-step approach to explore the search space for useful BI pattern recommendations. In the first step, we train a multi-class classifier using prior query logs to predict the next high-level actions in terms of a BI operation (e.g., {\em Drill-Down} or {\em Roll-up}) and a measure that the user is interested in. In the second step, the high-level actions are further refined into actual BI pattern recommendations using collaborative filtering. This two-step approach allows us to not only divide and conquer the huge search space, but also requires less training data. Our experimental evaluation shows that BI-REC achieves an accuracy of 83% for BI pattern recommendations and up to 2X speedup in latency of prediction compared to a state-of-the-art baseline. Our user study further shows that BI-REC provides recommendations with a precision@3 of 91.90% across several different analysis tasks.

0
0
下载
预览

最新论文

Conversational interfaces to Business Intelligence (BI) applications enable data analysis using a natural language dialog in small incremental steps. To truly unleash the power of conversational BI to democratize access to data, a system needs to provide effective and continuous support for data analysis. In this paper, we propose BI-REC, a conversational recommendation system for BI applications to help users accomplish their data analysis tasks. We define the space of data analysis in terms of BI patterns, augmented with rich semantic information extracted from the OLAP cube definition, and use graph embeddings learned using GraphSAGE to create a compact representation of the analysis state. We propose a two-step approach to explore the search space for useful BI pattern recommendations. In the first step, we train a multi-class classifier using prior query logs to predict the next high-level actions in terms of a BI operation (e.g., {\em Drill-Down} or {\em Roll-up}) and a measure that the user is interested in. In the second step, the high-level actions are further refined into actual BI pattern recommendations using collaborative filtering. This two-step approach allows us to not only divide and conquer the huge search space, but also requires less training data. Our experimental evaluation shows that BI-REC achieves an accuracy of 83% for BI pattern recommendations and up to 2X speedup in latency of prediction compared to a state-of-the-art baseline. Our user study further shows that BI-REC provides recommendations with a precision@3 of 91.90% across several different analysis tasks.

0
0
下载
预览
Top