图像修复(英语:Inpainting)指重建的图像和视频中丢失或损坏的部分的过程。例如在博物馆中,这项工作常由经验丰富的博物馆管理员或者艺术品修复师来进行。数码世界中,图像修复又称图像插值或视频插值,指利用复杂的算法来替换已丢失、损坏的图像数据,主要替换一些小区域和瑕疵。

VIP内容

摘要: 图像修复是计算机视觉领域中极具挑战性的研究课题。近年来,深度学习技术的发展推动了图像修复性能的显著提升,使得图像修复这一传统课题再次引起了学者们的广泛关注。文章致力于综述图像修复研究的关键技术。由于深度学习技术在解决“大面积缺失图像修复”问题时具有重要作用并带来了深远影响,文中在简要介绍传统图像修复方法的基础上,重点介绍了基于深度学习的修复模型,主要包括模型分类、优缺点对比、适用范围和在常用数据集上的性能对比等,最后对图像修复潜在的研究方向和发展动态进行了分析和展望。

http://www.jsjkx.com/CN/10.11896/jsjkx.210100048

成为VIP会员查看完整内容
0
19

最新内容

We present a new versatile building block for deep point cloud processing architectures that is equally suited for diverse tasks. This building block combines the ideas of spatial transformers and multi-view convolutional networks with the efficiency of standard convolutional layers in two and three-dimensional dense grids. The new block operates via multiple parallel heads, whereas each head differentiably rasterizes feature representations of individual points into a low-dimensional space, and then uses dense convolution to propagate information across points. The results of the processing of individual heads are then combined together resulting in the update of point features. Using the new block, we build architectures for both discriminative (point cloud segmentation, point cloud classification) and generative (point cloud inpainting and image-based point cloud reconstruction) tasks. The resulting architectures achieve state-of-the-art performance for these tasks, demonstrating the versatility and universality of the new block for point cloud processing.

0
0
下载
预览

最新论文

We present a new versatile building block for deep point cloud processing architectures that is equally suited for diverse tasks. This building block combines the ideas of spatial transformers and multi-view convolutional networks with the efficiency of standard convolutional layers in two and three-dimensional dense grids. The new block operates via multiple parallel heads, whereas each head differentiably rasterizes feature representations of individual points into a low-dimensional space, and then uses dense convolution to propagate information across points. The results of the processing of individual heads are then combined together resulting in the update of point features. Using the new block, we build architectures for both discriminative (point cloud segmentation, point cloud classification) and generative (point cloud inpainting and image-based point cloud reconstruction) tasks. The resulting architectures achieve state-of-the-art performance for these tasks, demonstrating the versatility and universality of the new block for point cloud processing.

0
0
下载
预览
Top