在计算机图像处理和计算机图形学中,图像缩放(image scaling)是指对数字图像的大小进行调整的过程。图像缩放是一种非平凡的过程,需要在处理效率以及结果的平滑度(smoothness)和清晰度(sharpness)上做一个权衡。当一个图像的大小增加之后,组成图像的像素的可见度将会变得更高,从而使得图像表现得“软”。相反地,缩小一个图像将会增强它的平滑度和清晰度。

最新论文

Rain streaks in the air appear in various blurring degrees and resolutions due to different distances from their positions to the camera. Similar rain patterns are visible in a rain image as well as its multi-scale (or multi-resolution) versions, which makes it possible to exploit such complementary information for rain streak representation. In this work, we explore the multi-scale collaborative representation for rain streaks from the perspective of input image scales and hierarchical deep features in a unified framework, termed multi-scale progressive fusion network (MSPFN) for single image rain streak removal. For similar rain streaks at different positions, we employ recurrent calculation to capture the global texture, thus allowing to explore the complementary and redundant information at the spatial dimension to characterize target rain streaks. Besides, we construct multi-scale pyramid structure, and further introduce the attention mechanism to guide the fine fusion of this correlated information from different scales. This multi-scale progressive fusion strategy not only promotes the cooperative representation, but also boosts the end-to-end training. Our proposed method is extensively evaluated on several benchmark datasets and achieves state-of-the-art results. Moreover, we conduct experiments on joint deraining, detection, and segmentation tasks, and inspire a new research direction of vision task-driven image deraining. The source code is available at \url{https://github.com/kuihua/MSPFN}.

0
0
下载
预览
Top