摘要:近年来,基于深度学习的表面缺陷检测技术广泛应用在各种工业场景中.本文对近年来基于深度学习的表面缺陷检测方法进行了梳理,根据数据标签的不同将其分为全监督学习模型方法、无监督学习模型方法和其他方法三大类,并对各种典型方法进一步细分归类和对比分析,总结了每种方法的优缺点和应用场景.本文探讨了表面缺陷检测中三个关键问题,介绍了工业表面缺陷常用数据集.最后,对表面缺陷检测的未来发展趋势进行了展望.
泡泡图灵智库,带你精读机器人顶级会议文章 标题:Fully Convolutional Networks for Surface Defect Inspection in Industrial Environment 作者:Zhiyang
目录 意义 图像分割方法 评价方法:最终测量精度UMA 一、意义 概念: 把图像分解成构成它的部件和对象的过程 定位感兴趣对象在图像中的位置和范围 意义:图像分割是图像处理与理解、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题