Google Research Group的Google高级研究员,他与人共同创立并领导了Google Brain团队,即Google的深度学习和人工智能研究团队。他和他的合作者正在研究语音识别,计算机视觉,语言理解和各种其他机器学习任务的系统。Jeff在Google期间,曾对Google的爬网,索引和查询服务系统,Google的主要广告和AdSense for content系统的主要部分以及Google的分布式计算基础结构(包括MapReduce,BigTable和Spanner)进行代码签名。杰夫(Jeff)是ACM和AAAS,美国国家工程院院士,计算机科学ACM -Infosys基金会奖获得者。他拥有华盛顿大学的计算机科学博士学位,在那里他与Craig Chambers一起研究了面向对象语言的全程序优化技术,并获得了明尼苏达大学的计算机科学和经济学学士学位。

VIP内容

【导读】深度学习和硬件怎样结合?计算机界神级人物、谷歌人工智能主管Jeff Dean发表了独自署名论文《The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design》,17页pdf论文,长文介绍了后摩尔定律时代的机器学习研究进展,以及他对未来发展趋势的预测判断。

在过去的十年里,机器学习,特别是基于人工神经网络的深度学习方法取得了一系列显著的进步,从而提高了我们在更广泛的领域建立更精确系统的能力,包括计算机视觉、语音识别、语言翻译和自然语言理解任务。这篇论文是2020年国际固态电路会议(ISSCC)的主题演讲的配套论文,讨论了机器学习的一些进展,以及这些进展对我们需要构建的计算设备的影响,特别是在后摩尔定律时代。它还讨论了一些方法,机器学习也可以帮助电路设计过程的某些方面。最后,它提供了至少一个有趣方向的草图,朝向更大规模的多任务模型,这些模型是稀疏激活的,并且使用了比今天的机器学习模型更动态的、基于实例和任务的路由。

成为VIP会员查看完整内容
0
22
Top