超文本传输安全协议是超文本传输协议和 SSL/TLS 的组合,用以提供加密通讯及对网络服务器身份的鉴定。

热门内容

Knowledge representation learning (KRL) aims to represent entities and relations in knowledge graph in low-dimensional semantic space, which have been widely used in massive knowledge-driven tasks. In this article, we introduce the reader to the motivations for KRL, and overview existing approaches for KRL. Afterwards, we extensively conduct and quantitative comparison and analysis of several typical KRL methods on three evaluation tasks of knowledge acquisition including knowledge graph completion, triple classification, and relation extraction. We also review the real-world applications of KRL, such as language modeling, question answering, information retrieval, and recommender systems. Finally, we discuss the remaining challenges and outlook the future directions for KRL. The codes and datasets used in the experiments can be found in https://github.com/thunlp/OpenKE.

0
22
下载
预览

最新内容

We introduce blueprint separable convolutions (BSConv) as highly efficient building blocks for CNNs. They are motivated by quantitative analyses of kernel properties from trained models, which show the dominance of correlations along the depth axis. Based on our findings, we formulate a theoretical foundation from which we derive efficient implementations using only standard layers. Moreover, our approach provides a thorough theoretical derivation, interpretation, and justification for the application of depthwise separable convolutions (DSCs) in general, which have become the basis of many modern network architectures. Ultimately, we reveal that DSC-based architectures such as MobileNets implicitly rely on cross-kernel correlations, while our BSConv formulation is based on intra-kernel correlations and thus allows for a more efficient separation of regular convolutions. Extensive experiments on large-scale and fine-grained classification datasets show that BSConvs clearly and consistently improve MobileNets and other DSC-based architectures without introducing any further complexity. For fine-grained datasets, we achieve an improvement of up to 13.7 percentage points. In addition, if used as drop-in replacement for standard architectures such as ResNets, BSConv variants also outperform their vanilla counterparts by up to 9.5 percentage points on ImageNet. Code and models are available under https://github.com/zeiss-microscopy/BSConv.

0
0
下载
预览

最新论文

We introduce blueprint separable convolutions (BSConv) as highly efficient building blocks for CNNs. They are motivated by quantitative analyses of kernel properties from trained models, which show the dominance of correlations along the depth axis. Based on our findings, we formulate a theoretical foundation from which we derive efficient implementations using only standard layers. Moreover, our approach provides a thorough theoretical derivation, interpretation, and justification for the application of depthwise separable convolutions (DSCs) in general, which have become the basis of many modern network architectures. Ultimately, we reveal that DSC-based architectures such as MobileNets implicitly rely on cross-kernel correlations, while our BSConv formulation is based on intra-kernel correlations and thus allows for a more efficient separation of regular convolutions. Extensive experiments on large-scale and fine-grained classification datasets show that BSConvs clearly and consistently improve MobileNets and other DSC-based architectures without introducing any further complexity. For fine-grained datasets, we achieve an improvement of up to 13.7 percentage points. In addition, if used as drop-in replacement for standard architectures such as ResNets, BSConv variants also outperform their vanilla counterparts by up to 9.5 percentage points on ImageNet. Code and models are available under https://github.com/zeiss-microscopy/BSConv.

0
0
下载
预览
父主题
Top