本文的目的是展示在解决各种视觉合成和生成任务方面的研究贡献,包括图像翻译、图像补全和已完成的场景分解。本论文共五篇论文,每一篇论文都提出了一种新的基于学习的方法来合成内容可信且外观逼真的图像。每一项工作都证明了所提出的方法在图像合成方面的优越性,并对其他任务如深度估计做出了进一步的贡献。

成为VIP会员查看完整内容
20

相关内容

【牛津大学博士论文】解释深度神经网络,134页pdf
专知会员服务
221+阅读 · 2020年10月8日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员