项目名称: 机器人宇航员安全控制策略及变时延力反馈遥操作研究

项目编号: No.51305097

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 机械、仪表工业

项目作者: 蒋再男

作者单位: 哈尔滨工业大学

项目金额: 25万元

中文摘要: 具有双臂双手的仿人机器人宇航员遥操作在空间灵巧作业领域具有重要应用前景,然而天地5-7秒变化通讯时延和空间作业安全严重制约了作业性能。本项目用关节与笛卡尔的运动和感知映射方法,研究操作者头部、双臂、双手和腰部与机器人宇航员相应部位的映射关系,克服运动学差异性,实现二者间直观准确地运动和感知映射,为时延力反馈遥操作奠定基础。提出综合考虑关节位置、速度、加速度和制动因素的改进连续体碰撞检测方法,研究机器人宇航员的自碰撞和它碰撞预测检测,实现空间作业的层次化安全控制。基于时域无源性方法,提出利用能量观测器和无源控制器分别监视和控制变时延力反馈遥操作系统能量,探索变时延对遥操作性能的影响规律。搭建模拟空间站在轨维护的地面遥操作实验系统,并通过在轨模块更换等实验进行验证。该项目研究对于揭示机器人宇航员安全有效的遥操作控制规律,满足我国空间站和航天器的在轨维护等应用需求,具有重要的科学和实际意义。

中文关键词: 空间机器人;遥操作;运动映射;无源性;

英文摘要: Teleoperation of humanoid robonaut with dual arms and hands has important application prospect for space dexterous tasks, but the manipulation performance is seriously limited by the 5-7s varying communication time delay between space and ground and space safety operation. In order to overcome the kinematic difference between operator and robonaut, movement and sensation mapping between the head, dual arms, dual hands and waist of operator and the corresponding parts of robonaut is researched based on joint and Cartesian space mapping method, then the operator is able to control robonaut intuitively and accurately, which lays the foundation for force reflection teleoperation. The modified continuous collision detection method which considers the positon, velocity, acceleration and braking characteristics is researched to accomplish the predictive collision detection of robonaut itself and interaction with environment,and the layered safety control strategy is proposed to solve the space safety operation problem. The time domain passivity control method with energy observers and passivity controllers is proposed to monitor and control the energy of force reflection teleoperation with varying time delay, which explores the influence law of varying time delay on teleoperation performance. The ground experimental sy

英文关键词: Space Robot;Teleoperation;Motion Mapping;Passivity;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
29+阅读 · 2021年9月14日
【硬核书】机器人网络分布式控制
专知会员服务
67+阅读 · 2021年7月25日
专知会员服务
11+阅读 · 2021年5月25日
专知会员服务
127+阅读 · 2021年2月17日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
强化学习和最优控制的《十个关键点》81页PPT汇总
专知会员服务
102+阅读 · 2020年3月2日
这个机器人一个表情,看过的人不寒而栗
量子位
0+阅读 · 2021年12月4日
基于自监督的可逆性强化学习方法
AI前线
4+阅读 · 2021年12月3日
机器人运动轨迹的模仿学习综述
专知
0+阅读 · 2021年11月12日
学习抓取柔性物体
TensorFlow
3+阅读 · 2021年7月5日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
57+阅读 · 2020年7月12日
【无人机】无人机的自主与智能控制
产业智能官
42+阅读 · 2017年11月27日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Building Odia Shallow Parser
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
12+阅读 · 2020年6月20日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
15+阅读 · 2019年3月16日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关VIP内容
专知会员服务
29+阅读 · 2021年9月14日
【硬核书】机器人网络分布式控制
专知会员服务
67+阅读 · 2021年7月25日
专知会员服务
11+阅读 · 2021年5月25日
专知会员服务
127+阅读 · 2021年2月17日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
强化学习和最优控制的《十个关键点》81页PPT汇总
专知会员服务
102+阅读 · 2020年3月2日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Building Odia Shallow Parser
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
12+阅读 · 2020年6月20日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
15+阅读 · 2019年3月16日
Arxiv
11+阅读 · 2018年4月25日
微信扫码咨询专知VIP会员