项目名称: 基于SiC衬底的GaN基功率LED光电热耦合与光子调控的研究

项目编号: No.61475084

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 孔凡敏

作者单位: 山东大学

项目金额: 82万元

中文摘要: 基于InGaN/GaN 的功率LED在固体发光器件中扮演着重要的角色,目前限制GaN基功率LED在照明领域应用的一个重要因素是界面反射导致光提取效率较低,而且在大电流注入下出现效率下降(Droop)的现象,从而导致LED迅速发热并影响其性能。本课题通过研究功率LED的电学、热学和光学过程之间的内在联系和相互耦合机制,揭示在大电流注入下功率LED效率降低与其光电热物理过程的联系和规律;研究深刻蚀、浅刻蚀以及嵌入式光子晶体结构与LED有源区的耦合机理,运用复耦合模理论和时域电磁方法分析周期、准周期光子晶体对LED中光子调控的规律;给出基于SiC衬底的大功率GaN基LED最佳结构设计方法,并制备高效率SiC衬底功率LED,实现高效的电光转换。该项目的实施,不仅可以拓宽传统LED的设计原理和开发思路,也可为新型电光转换器件的发展提供重要的理论依据和技术支持。

中文关键词: 发光二极管;光电热耦合;光子调控;发光效率;光子晶体

英文摘要: The GaN-based blue light-emitting diodes (LED)plays an important role in solid-state lighting. Blue LED with a coating of a yellow phosphor material can be used as a white light source. High power LED is expected to be the right replacement of conventional light sources and the ideal choice for green lighting. However, due to several possible loss mechanisms and the phenomenon of total internal reflection, the light extraction efficiency of LEDs is still low because of the most light emitted from active layer is trapped inside the LED chips. Furthermore, LED's internal quantum efficiency peaks at low driving currents and drops significantly at higher currents. This phenomenon is called efficiency droop. Both of these phenomena result in the thermal effect and reduce the LED performance. By studying the internal relations and interactive coupling mechanism of the electrical,thermal and optical processes in LED chip, the purpose of this project is to investigate the droop mechanism and of LED under high current injection. This project focuses on the coupling mechanism between the light extraction efficiency and several PhCs structures,including weak etched PhCs,deep etched PhCs,and embedded PhCs. In this research, the coupled-mode theory and time-domain electromagnetic simulation will be employed to study the mechanism that the PhC and amorphous PhC control the light radiation. The ultimate goal of this project is to design the optimal structure of GaN-based LED on the SiC substrates and fabricate high efficiency power GaN-based LED on the same substrates experimentally. This project will provide an important theoretical basis and technical support for the new optoelectronic devices.

英文关键词: Light-emitting Diodes;Photo-Electro-Thermal Coupling;Photonic Manipulation;Luminous Efficiency;Photonic Crystals

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】基于渐进式增强学习的人脸伪造图像检测
专知会员服务
21+阅读 · 2022年1月19日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
28+阅读 · 2021年8月16日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
少标签数据学习,54页ppt
专知会员服务
194+阅读 · 2020年5月22日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
OPPO Find N 诞生中的矛与盾 | 海面之下 Vol.1
ZEALER订阅号
0+阅读 · 2021年12月21日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
12+阅读 · 2018年1月12日
小贴士
相关VIP内容
【AAAI2022】基于渐进式增强学习的人脸伪造图像检测
专知会员服务
21+阅读 · 2022年1月19日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
28+阅读 · 2021年8月16日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
少标签数据学习,54页ppt
专知会员服务
194+阅读 · 2020年5月22日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
相关资讯
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
OPPO Find N 诞生中的矛与盾 | 海面之下 Vol.1
ZEALER订阅号
0+阅读 · 2021年12月21日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员