项目名称: 高能效自调频压电俘能技术研究

项目编号: No.11202176

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 关明杰

作者单位: 厦门大学

项目金额: 26万元

中文摘要: 大多数基于振动的俘能器都采用弹簧质量阻尼结构并使该结构的共振频率与俘能器周围环境振动的频率一致。只要这两个频率存在很小的偏差,俘能器的效率就会显著降低。在实际应用中俘能器周围环境振动频率通常是在一定范围内变化,极大地影响了俘能器的效率。本课题提出一种新型的自调频压电俘能技术,使得俘能器结构的共振频率可以根据周围环境的振动频率自动调整。课题以悬臂梁结构来解释该技术,其技术特点体现在三个方面:第一是高能效的调频结构,梁结构由基本梁和与基本梁按一定方式耦合的分布式压电片构成,改变任一压电片的电场边界条件即可改变梁结构的共振频率;第二是高的材料利用率,所有的压电片都在作为电场边界条件驱动元件的同时可作为俘能元件;第三是低能耗的测频技术,从传感器输出去分析频率变化的方向,目的在于降低频率检测系统的复杂性和能耗,提高净俘能。本课题的研究成果将大大提高压电俘能器在实际工程中应用的可能性和适应性。

中文关键词: 自调频;压电俘能技术;高能效;电场边界条件;

英文摘要: Most vibration-based energy-harvesters are spring-mass-damper systems which generate maximum power when the resonant frequency of the harvester matches the frequency of the ambient vibration. Any difference between these two frequencies can result in a significant decrease in harvesting efficiency. In real applications the frequency of the ambient vibration usually are changing in a certain range which will significantly influence the total harvesting efficiency. The purpose of the present research is to propose a novel method to ensure that the harvester resonance frequency matches the ambient vibration frequency. The principles of the proposed method rely on the following techniques, demonstrated with a cantilever beam structure: The first is the energy-efficient stiffness tuning technique. The cantilever beam is constructed by the base beam and several piezoelectric elements bonded with the base beam in a certain manner. By changing the electrical boundary condition of any piezoelectric element, the resonant frequency of the cantilever beam will change accordingly; The second is that all piezoelectric elements can act as the harvester element and at the same time the actuator element whose electrical boundary condition is controlled; The third is the low-cost frequency sensing technique. The changing directio

英文关键词: self-tuning;piezoelectric energy harvesting technology;high energy-efficient;electrical boundary condition;

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
15+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
40+阅读 · 2022年3月21日
车联网白皮书,44页pdf
专知会员服务
77+阅读 · 2022年1月3日
重磅 |《企业数字化转型白皮书(2021版)》发布!83页pdf
专知会员服务
162+阅读 · 2021年11月11日
专知会员服务
30+阅读 · 2021年7月2日
专知会员服务
21+阅读 · 2021年5月14日
2021年中国人工智能在工业领域的应用研究报告(附报告)
《碳中和愿景下储能产业发展白皮书》27页ppt
专知会员服务
65+阅读 · 2021年3月30日
专知会员服务
120+阅读 · 2021年3月22日
【德勤】中国人工智能产业白皮书,68页pdf
专知会员服务
295+阅读 · 2019年12月23日
深度学习技术在自动驾驶中的应用
智能交通技术
25+阅读 · 2019年10月27日
一文读懂图像压缩算法
七月在线实验室
15+阅读 · 2018年5月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关主题
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
15+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
40+阅读 · 2022年3月21日
车联网白皮书,44页pdf
专知会员服务
77+阅读 · 2022年1月3日
重磅 |《企业数字化转型白皮书(2021版)》发布!83页pdf
专知会员服务
162+阅读 · 2021年11月11日
专知会员服务
30+阅读 · 2021年7月2日
专知会员服务
21+阅读 · 2021年5月14日
2021年中国人工智能在工业领域的应用研究报告(附报告)
《碳中和愿景下储能产业发展白皮书》27页ppt
专知会员服务
65+阅读 · 2021年3月30日
专知会员服务
120+阅读 · 2021年3月22日
【德勤】中国人工智能产业白皮书,68页pdf
专知会员服务
295+阅读 · 2019年12月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员