项目名称: 面向人工定向重构纤维素菌群的共生分子机理研究

项目编号: No.31600081

项目类型: 青年科学基金项目

立项/批准年度: 2017

项目学科: 生物科学

项目作者: 杜然

作者单位: 清华大学

项目金额: 21万元

中文摘要: 发展生物质能源是解决当前能源与环境问题的重要途径之一。木质纤维素是自然界产量最高的多糖物质,是极具潜力的生物质能源生产原料。转化纤维素需要多种生物酶的参与。天然菌群是这些酶类的有效来源,能够高效转化纤维素。然而,天然菌群的结构非常复杂,常常导致无法很好地调控和优化其纤维素转化性能。鉴定菌群中对共生起关键作用的因子是揭示天然菌群纤维素转化机理的关键。本研究拟首先通过天然菌群的简化技术,构建最优化的人工菌群;然后综合运用多组学分析、生化和遗传工程手段鉴定在菌群共生中发挥关键作用的蛋白及小分子因子。进一步通过研究这些关键因子的作用机理,阐明纤维素转化菌群中菌株间共生的分子机理。该机理的阐明,有助于揭示纤维素转化天然菌群共生协同机制,指导菌群调控与性能优化,具有重要的科学意义和应用价值。

中文关键词: 生物降解;代谢产物;代谢网络;微生物资源;降解机理

英文摘要: Bioenergy is one of the best solutions for energy and environmental concerns currently. Lignocellulose, which is the highest-yielding polysaccharide in nature, is considered the most promising substrate for bioenergy production. Natural consortium could efficiently utilize cellulose, as consortium is a valid source for various enzyme systems demanded for conversion of cellulose. However, the complex community structures of consortium greatly limited the regulation and optimization effect of conversion capabilities of cellulose. Identification of dominant factors for symbiosis of consortium is the key for expounding the mechanism of efficient conversion capabilities of consortium. Therefore, in this study, we intend to reconstruction a simplified consortium based on simplification technique, and then identify the proteins and small molecule which played key roles for symbiosis of consortium via muti-omics, biochemical and genetic engineering techniques. Then, the molecular mechanism will be revealed based on further studies of mechanism of these dominant factors. The clarification of this mechanism will help reveal of symbiosis and synergy mechanism, and efficiently guide the regulation and optimization of conversion capabilities of consortium, which has important scientific significance and application value.

英文关键词: Biodegradation;Metabolite;Metabolic network;Microbial resources;Degradation mechanism

成为VIP会员查看完整内容
0

相关内容

工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
超级自动化技术与应用研究报告(2022年)
专知会员服务
77+阅读 · 2022年2月3日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
133+阅读 · 2021年9月20日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
109+阅读 · 2021年4月7日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
异质图嵌入综述: 方法、技术、应用和资源
专知会员服务
47+阅读 · 2020年12月13日
专知会员服务
104+阅读 · 2020年10月31日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关主题
相关VIP内容
工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
超级自动化技术与应用研究报告(2022年)
专知会员服务
77+阅读 · 2022年2月3日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
133+阅读 · 2021年9月20日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
109+阅读 · 2021年4月7日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
异质图嵌入综述: 方法、技术、应用和资源
专知会员服务
47+阅读 · 2020年12月13日
专知会员服务
104+阅读 · 2020年10月31日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员