项目名称: Mather理论与Hamilton系统的不稳定性
项目编号: No.10801071
项目类型: 青年科学基金项目
立项/批准年度: 2009
项目学科: 金属学与金属工艺
项目作者: 崔小军
作者单位: 南京大学
项目金额: 16万元
中文摘要: 本项目主要研究Mather理论,弱KAM理论以及其在Hamilton系统的不稳定性研究中的应用.具体来讲,在本项目中: 1.我们研究了在一个Lagrange图上的紧致不变集上Hamilton函数是否为常值这一问题; 2.从Mather理论和弱KAM理论的角度,研究了两个可换的Tonelli Hamilton系统之间的关系; 3.研究了构型空间为二维环面时Tonelli Hamilton系统的具有常能量的不变截面的Lagrange性问题; 4.我们努力把Mather理论的思想用于伪全纯曲线及极小lamination的研究中.
中文关键词: Mather 理论; 弱KAM; 粘性解; 伪全纯曲线; 极小current.
英文摘要: This program is concerned with Mather theory, weak KAM theory and their applications to the study of instability of Hamiltonian dynamics. More precisely, we have studied: 1.whether the Hamiltonian is of constant on a compact, connected invariant set in a Lagrangian graph; 2.the connections between the dynamics of two commuting Tonelli Hamiltonians from the viewpoint of Mather theory and weak KAM theory; 3.the problem whether an invariant section with constant energy is Lagrangian for a Tonelli Hamiltonian system if the configuration space is a 2-torus; 4.dynamical properties of pseudo-holomorphic lines and minimal laminations follow the ideas of Mather theory.
英文关键词: Mather theory; weak KAM; viscosity solution; pseudo-holomorphic line; minimal current.