项目名称: 高速列车永磁牵引系统设计理论与方法研究
项目编号: No.U1434202
项目类型: 联合基金项目
立项/批准年度: 2015
项目学科: 电工技术
项目作者: 方攸同
作者单位: 浙江大学
项目金额: 270万元
中文摘要: 应用永磁电机技术对高速列车牵引传动系统进行升级,提升其效率、可靠性和调速性能具有重要的理论意义和应用前景,其推广将产生显著的经济与社会效益。目前,各发达国家已在多条线路上实现了永磁电机牵引传动系统的示范运行,我国也已开始高速列车领域的尝试。工程实践表明永磁电机牵引传动系统的设计理论与方法尚不完善,某种程度上制约了装备开发与工程实践。本项目将围绕设计理论中存在的牵引控制、电机设计、变流器设计、试验技术与系统优化等方面的理论缺陷与技术瓶颈展开系统研究,优化理论模型,提高计算分析的效率与精度,实现系统条件下的全局优化,在此基础上形成自主的高速列车永磁电机牵引传动系统设计理论与方法,并通过数值仿真与半实物仿真、样机研制与模型和实际样机试验进行验证、优化与完善,为我国下一代高速列车研发提供支撑。
中文关键词: 永磁电动机;牵引传动系统;耦合场分析;高速列车;;设计与优化
英文摘要: It is of great theoretical significance and application prospect to apply the technologies on permanent magnet motors (PMM) to updating the traction system on high-speed trains, as well as enhancing its efficiency, reliability and speed-governing performance. So far, the demonstrating operations of PMM-based traction systems have been carried out on several railways in the developed countries, and the same attempt has been launched on domestic high-speed trains. Industrial practice has indicated that the design theory of PMM-based traction systems is still inadequate, which, to a certain extent, restricts the equipment development and industrial practice. This project focuses on the theory flaws and technology bottlenecks of design theories for traction control, motor design, converter design, experimental technology and system optimization. The goal of this project is to optimize theoretic model, increase efficiency and accuracy of calculation and analysis, and ultimately implement systematic global optimization, based on which, the design theory for PMM-based traction systems on high-speed trains with independent intellectual property rights will be achieved. The validation, optimization and perfection of the proposed theories will be completed through numerical simulation, semi-physical simulation and experiments on prototypes. The achievement can provide a support for the development of China’s next generation high-speed trains.
英文关键词: NULL