项目名称: 基于芳香稠环单元的有机/高分子半导体材料的设计、合成与性能研究

项目编号: No.51333006

项目类型: 重点项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 耿延候

作者单位: 天津大学

项目金额: 300万元

中文摘要: 具有高迁移率特征的有机/高分子半导体材料是制备高性能有机薄膜晶体管(OTFT)和太阳能电池(OSC)的基础。本项目从降低共轭分子重组能、提高分子间相互作用,从而提高材料迁移率和激子分离效率的角度出发,面向有机/高分子半导体材料在溶液加工型OTFT和OSC中的应用,发展新型芳香稠环单元的合成方法,设计与合成基于新型芳香稠环单元的有机/高分子半导体材料,研究分子结构-结晶结构(聚集态结构)-器件性能的关系。通过调节烷基链的结构和共轭齐聚物/聚合物的链结构和链构象,建立共轭分子的能级/带隙和聚集态结构(或结晶结构)的精细调控方法,发展具有全新结构和自主知识产权的溶液加工型高迁移率有机/高分子半导体材料体系。面向OTFT应用,获得1-2种迁移率>3 cm2/V•s且具有优异溶液加工性能的有机/高分子高迁移率半导体材料;面向OSC应用,力争获得能量转换效率>10%的窄带隙有机/高分子半导体材料。

中文关键词: 有机/高分子半导体材料;载流子迁移率;能量转换效率;有机薄膜晶体管;有机太阳能电池

英文摘要: Organic/polymeric semiconducting materials with high charge carrier mobility are crucial for organic thin-film transistors (OTFT) and organic solar cells (OSC). Fused aromatics usually have low reorganization energy and strong intermolecular interaction, leading to high charge carrier mobility and exciton dissociation efficiency. Therefore, in this project, we will develop the synthesis methods of fused aromatics, and design and synthesize three types of organic/polymeric semiconducting materials based on these fused aromatics, i.e. small molecular high mobility materials, oligomeric high mobility materials and polymeric low bandgap materials, for OTFT and OSC application. The relationship between molecular structures, crystalline structures (aggregation structures) and device properties will be studied. Backbone structures and configuration as well as alkyl chains will be modulated for finely tuning the energy levels, optical bandgap and crystalline structures (aggregation structures) of the conjugated molecules. Based on these studies, we will develop novel organic/polymeric semiconducting materials with intellectual property. 1-2 solution processible organic/polymeric semiconducting materials with charge carrier mobility beyond 3 cm2/V•s for OTFT application and 1-2 solution processible organic/polymeric semiconducting materials with power conversion efficiency of >10% for OSC application will be delivered.

英文关键词: Organic semiconductors;Charge carrier mobility;power conversion efficiency;Organic thin-film transistor;Organic solar cell

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
21+阅读 · 2021年12月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【IJCAI2020】图神经网络预测结构化实体交互
专知会员服务
42+阅读 · 2020年5月13日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
26+阅读 · 2018年8月19日
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员