项目名称: 状态依赖时滞微分方程动力学研究
项目编号: No.11271115
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 郭上江
作者单位: 湖南大学
项目金额: 64万元
中文摘要: 到目前为止已出现了大量的状态依赖时滞微分方程模型,而现有动力系统相关理论却不能直接用于其动力学研究。为此,一方面综合运用现代数学知识,发展状态依赖时滞微分方程(等变)分岔、不变流形及周期解理论,重点研究分岔解支的动力学性质,不变流形的存在性、光滑性和吸引性,以及周期解的个数、稳定性和时空模式等问题,使状态依赖时滞微分方程动力学研究形成一套比较系统的理论和研究方法;另一个方面将新建立的理论和研究方法应用于现代科学及工程技术中一些用状态依赖时滞微分方程描述的数学模型的定性研究,揭示这些模型丰富而复杂的动力学性质,为应用领域的工作者提供一些可靠的理论依据和解决问题的方法。该项目研究既要用到经典的动力系统理论,又要用到拓扑、代数、泛函分析及计算数学等相关知识,不仅可丰富动力系统理论,又可探索数学(尤其是泛函分析)及其交叉应用中的新思想、新理论和新方法,且可使不同数学分支学科之间进行相互交叉与渗透。
中文关键词: 状态依赖时滞微分方程;周期解;拟周期解;稳定性;不变流形
英文摘要: The emergence of a large number of differential equation models with state-dependent delays (sd-DDEs) calls for further development of the theory of dynamical system and provides an excellent environment for new theory and new methods because the existing theory of dynamical system cannot be directly applied to the study of sd-DDEs. Based on comprehensive applications of modern mathematics knowledge, we firstly develop theory of bifurcation (including equivariant bifurcation), invariant manifolds, and periodic solutions for sd-DDEs, with emphasis on the dynamics of bifurcated branches, the existence, smoothness and attractivity of invariant manifolds, the number, stability and spatial-temporal patterns of periodic solutions, and so on, in order to form a systematic theory and research methods for the dynamics study of sd-DDEs. In the meantime, we apply the new theory and methods we have established to the study of rich and complicated dynamics of mathematical models described by sd-DDEs, which appear in modern science and engineering technology, in order to build a solid theoretical foundation and provide the methods to solve problems for researchers in applied fields. The study of sd-DDE not only needs the classic theory of dynamical systems, but also calls for other related knowledge including topology, algebr
英文关键词: state-dependent delay differential equation;periodic solution;quasi-periodic solution;stability;invariant manifold