项目名称: 基于量子点填充的光子晶体光纤多参量荧光温度传感器研究

项目编号: No.61275125

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 李学金

作者单位: 深圳大学

项目金额: 82万元

中文摘要: 面向物联网对先进温度传感器的需求,本研究计划将对基于量子点填充的光子晶体光纤多参量荧光温度传感器及其准分布式测量中的科学问题进行较为深入的理论和实验研究。拟采用带隙型光子晶体光纤作为温度传感器的工作光纤,量子点以及折射率温度敏感材料为光子晶体光纤中的填充介质,研究传感器的相关理论、信号补偿方式和分布测量方法中的关键问题。研究正向激发和反向激发情况下的传感器温度特性,研究光纤结构参数和长度等对传感器的影响。研究传感器输出的激发光强度、荧光波长、荧光强度和荧光寿命为测温参量的多参量光子晶体光纤荧光温度传感器,通过分析传感器输出的激发光和荧光的关联性,提出提高传感器信噪比的补偿方式,实现超灵敏温度测量。利用量子点宽泛的激发光波长范围,通过选择不同的量子材料,或具有不同形状、结构和尺寸的量子点,调节荧光波长,实现多通道测量,建立一种准分布式光子晶体光纤荧光温度传感器的理论和实验方法。

中文关键词: 光纤传感器;光子晶体光纤;量子点;荧光材料;温度传感器

英文摘要: To fitting the requirements of The Internet of Things(IOT), a kind of photonic crystal fiber(PCF) temperature sensors based on quantum dots filling and their quasi-distributed measurement systems will be studied in this project. Band gap photonic crystal optical fibers(BGPCF) used as working fibers, quantum dots mixed with the liquid of high refractive index material and filled in inside photonic crystal fibers, the sensor key questions in theory and experiment will be studied in details. The influence of PCF structure parameters and length on the propagation characteristics under forward and bacward stimulated fluorescence emission situations also will be researched.Besides the sensitivity of fluorescence to temperature, the excitation light passing through the photonic crystal fiber is also sensitive to temperature. Therefore, different from traditional fluorescent optical fiber sensors, multi-parameters such as the excitation light intensity in the photonic crystal optical fiber, fluorescence wavelength, fluorescence intensity and fluorescent lifetime, are all used as the parameters for temperature sensor. When the intensity ratio between excitation light detected and fluorescence is used as a parameter of temperature, we try to find a compensation way to enhances the sensor signal-to-noise ratio, and realiz

英文关键词: Optic fiber sensors;Photonic Crystal Fibers;Quantum dots;Fluorescent materials;Temperature sensors

成为VIP会员查看完整内容
0

相关内容

数据中心传感器技术应用 白皮书
专知会员服务
39+阅读 · 2021年11月13日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
39+阅读 · 2021年11月12日
专知会员服务
28+阅读 · 2021年8月16日
专知会员服务
43+阅读 · 2021年5月24日
基于深度学习的视频目标检测综述
专知会员服务
79+阅读 · 2021年5月19日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
专知会员服务
157+阅读 · 2020年7月26日
自回归模型:PixelCNN
专知会员服务
26+阅读 · 2020年3月21日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
38+阅读 · 2020年3月10日
小贴士
相关VIP内容
数据中心传感器技术应用 白皮书
专知会员服务
39+阅读 · 2021年11月13日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
39+阅读 · 2021年11月12日
专知会员服务
28+阅读 · 2021年8月16日
专知会员服务
43+阅读 · 2021年5月24日
基于深度学习的视频目标检测综述
专知会员服务
79+阅读 · 2021年5月19日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
专知会员服务
157+阅读 · 2020年7月26日
自回归模型:PixelCNN
专知会员服务
26+阅读 · 2020年3月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员