项目名称: 基于正交互补码的Chirp超宽带系统的研究与优化设计

项目编号: No.61301147

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 白智全

作者单位: 山东大学

项目金额: 30万元

中文摘要: 超宽带技术主要用于短距离高速无线通信,被公认为未来无线个域网的物理层标准和主流传输技术,其主要实现形式即冲激无线电。Chirp 超宽带系统即基于此方式,它通过采用线性调、扩频技术,用调频信号替代传统窄脉冲,具有设计灵活、抗干扰能力强等优点。而采用非线性方案设计能灵活抑制多窄带干扰的Chirp超宽带脉冲是一个关键问题。此外考虑超宽带系统的实际工作环境,在保证系统性能的同时提高超宽带系统的抗多址、多径等干扰的能力,也是超宽带系统设计的核心和关键。新近提出的正交互补码技术可有效解决上述问题。本课题将从互补码Chirp 超宽带系统的整体设计出发,考虑实际存在的各主要干扰,如窄带干扰、多址和多径干扰,通过设计新型非线性Chirp 脉冲和正交互补码,创新性地给出超宽带系统的优化设计方案及准则,提高其在实际使用环境下的可靠性和有效性,改善频谱共享,这对其在无线个域网中的理论研究和实际应用将具有重要意义。

中文关键词: 超宽带技术;Chirp函数;正交互补码;干扰抑制;优化设计

英文摘要: Ultra wideband (UWB) technology is mainly used in wireless short-range high speed communication and it has been considered as the PHY standard and the main transmission technology of future wireless personal area network (WPAN). The basic implementation form of UWB is impulse radio. Chirp UWB system is based on this form, it substitutes the frequency-modulated signal for the traditional narrow impulse with the help of linear frequency modulation and spread spectrum technologies and has many advantages, such as flexible pulse design and excellent interference suppression, etc. For the suppression of different narrowband interference (NBI) of UWB system, it is a key issue to design the flexible Chirp UWB pulse. Considering the real work environment of UWB system, it is also very important to obtain the excellent system performance with the improved abilities for the resistance of multiple access interference (MAI) and multipath interference (MPI). The latest proposed orthogonal complementary code (OCC) has inherent characteristics to resolve the above issues. In this project, we will provide the comprehensive research and design of OCC Chirp UWB system with the consideration of the main kinds of interference, such as NBI, MAI and MPI. Through the analysis and design of the novel non-linear Chirp UWB pulse and the

英文关键词: Ultra wideband;Chirp function;Orthogonal complementary code;Interference suppression;Optimization design

成为VIP会员查看完整内容
0

相关内容

基于移动机器人的拣货系统研究进展
专知会员服务
13+阅读 · 2022年1月29日
类脑超大规模深度神经网络系统
专知会员服务
49+阅读 · 2022年1月21日
【博士论文】基于冲量的加速优化算法
专知会员服务
24+阅读 · 2021年11月29日
【经典书】凸优化:算法与复杂度,130页pdf
专知会员服务
80+阅读 · 2021年11月16日
专知会员服务
53+阅读 · 2021年9月18日
专知会员服务
21+阅读 · 2021年3月9日
专知会员服务
30+阅读 · 2020年10月13日
专知会员服务
78+阅读 · 2020年8月4日
专知会员服务
41+阅读 · 2020年7月29日
专知会员服务
73+阅读 · 2020年5月21日
Transformer性能优化:运算和显存
PaperWeekly
1+阅读 · 2022年3月29日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【经典书】凸优化:算法与复杂度,130页pdf
云上应用系统数据存储架构演进
阿里技术
2+阅读 · 2021年9月1日
招聘平面设计实习生
微软研究院AI头条
0+阅读 · 2021年5月20日
平台积分体系设计方案
PMCAFF
31+阅读 · 2018年11月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Search-based Methods for Multi-Cloud Configuration
Arxiv
0+阅读 · 2022年4月20日
Max-Margin Contrastive Learning
Arxiv
17+阅读 · 2021年12月21日
小贴士
相关VIP内容
基于移动机器人的拣货系统研究进展
专知会员服务
13+阅读 · 2022年1月29日
类脑超大规模深度神经网络系统
专知会员服务
49+阅读 · 2022年1月21日
【博士论文】基于冲量的加速优化算法
专知会员服务
24+阅读 · 2021年11月29日
【经典书】凸优化:算法与复杂度,130页pdf
专知会员服务
80+阅读 · 2021年11月16日
专知会员服务
53+阅读 · 2021年9月18日
专知会员服务
21+阅读 · 2021年3月9日
专知会员服务
30+阅读 · 2020年10月13日
专知会员服务
78+阅读 · 2020年8月4日
专知会员服务
41+阅读 · 2020年7月29日
专知会员服务
73+阅读 · 2020年5月21日
相关资讯
Transformer性能优化:运算和显存
PaperWeekly
1+阅读 · 2022年3月29日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【经典书】凸优化:算法与复杂度,130页pdf
云上应用系统数据存储架构演进
阿里技术
2+阅读 · 2021年9月1日
招聘平面设计实习生
微软研究院AI头条
0+阅读 · 2021年5月20日
平台积分体系设计方案
PMCAFF
31+阅读 · 2018年11月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员