项目名称: 二维无机纳米材料异质结构的合成与表征

项目编号: No.21301032

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 孙正宗

作者单位: 复旦大学

项目金额: 25万元

中文摘要: 自 2004年以来,一些重要的单层二维材料,包括石墨烯(半金属)、MoS2(半导体)和h-BN(绝缘体)相继通过化学的方法被合成出来,其物性也逐步得到深入的研究。目前,新的研究开始尝试将不同的二维无机纳米材料整合成为更加复杂的功能器件。这种整合的关键是掌握不同二维无机纳米材料异质结构(平面或垂直方向的异质结构)的合成方法并研究其相应区域特殊的物理性质。理论和实验表明,这种新型异质结构有望在电子学、光电子学方面产生重大的应用。 本研究课题拟通过多次光(或电子束)曝光、掩膜刻蚀和分步CVD生长的方法,在平面或垂直方向上构建以石墨烯、MoS2和BN为基础的一级或多级异质结构。 通过光谱学,高分辨电子显微镜和电输运等表征方式,研究异质结区域内具体的化学键结构以及相应的物理性质。这些研究有助于理解二维材料异质结构的潜在应用,实现自主知识产权的技术储备,为设计新型的二维异质结构光、电子器件奠定基础。

中文关键词: 石墨烯;二维材料;异质结构;复合结构;

英文摘要: Since 2004, a series of important single-layer 2D materials, including graphene (semi-metal), MoS2 (semiconductor) and h-BN (insulator), have been synthesized with chemical methods and heavily investigated. As the research moves on, people start to think how to integrate different 2D materials into more useful and mulit-functional devices. The key of this integration is to make chemically compatible 2D material hetero-junctions, both laterally and vertically, and understand the special properties inside the junction. This new hetero-junction structure could potentially change the direction of future electronics and opto-electronics. In our research, we propose level-1 to level-n graphene/MoS2/BN hetero-junction structures in both lateral and vertical directions, through lithography, pattern etching and step-CVD growth methods. Spectroscopics, high resolution TEM and electrical transport techniques will be used to characterize the chemical bonding and physical properties inside the hetero-junction region. This research bears a great merit to understand the unique behaviors between different 2D materials, helps to build the library of techniques which could be the basis for designing new 2D hetero-junction opto-electronics and other potential applications.

英文关键词: graphene;2D material;heterojunction;composite;

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
专知会员服务
15+阅读 · 2021年10月11日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年8月7日
专知会员服务
31+阅读 · 2021年5月7日
知识图谱本体结构构建论文合集
专知会员服务
102+阅读 · 2019年10月9日
可对药物分子进行表征的几何深度学习
机器之心
0+阅读 · 2022年2月6日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
12+阅读 · 2020年12月10日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关资讯
可对药物分子进行表征的几何深度学习
机器之心
0+阅读 · 2022年2月6日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员