项目名称: 融合跨媒体特性与用户意图的网络热点话题分析方法研究

项目编号: No.61202322

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 计算机科学学科

项目作者: 刘纯熙

作者单位: 中国科学院大学

项目金额: 24万元

中文摘要: 本项目以网络多媒体应用的迅速兴起与网络话题对现实社会的深刻影响为研究背景,以融合网络数据的跨媒体特性与用户意图为切入点,探索有效的跨媒体话题检测与分析方法,揭示网络热点话题的传播与演化规律。拟从以下方面展开工作:1)针对单一模态数据造成的信息缺失问题,利用多模态数据之间的语义一致性与互补性,探索跨媒体中多模态数据间的有效关联与聚类算法;2)结合网络多源数据的跨媒体特性,探寻高效的多模态数据融合算法和大数据量处理技术,并充分利用用户意图信息,提出有效的网络热点话题检测与分析方法;3)针对单一模态信息表达能力不足的问题,拟以跨媒体全浸方式,结合话题演化的时序关系,对热点话题进行有效的结构化呈现,揭示话题的发生与发展规律;4)根据网络话题传播过程中的强弱趋势分析,检测话题发展中具有关键性作用的重要节点事件,发掘话题传播与发展过程中各个事件之间的相互影响关系。

中文关键词: 视频缩略图;用户意图;网络话题;跨媒体;多模态

英文摘要: The background of the project are the rapid rise of the multimedia applications on the web and the great impact of the web topics.This project starts from integrating the characteristic of the cross media data and the user intention, explores the effective method for topic detection and analysis, and reveals the dissemination and evolution of the hot topics. It mainly contains the following four parts: (1) According to information lose problem incured by single modality data, we propose effective data association and clustering algorithm based on the intrinsic semantic consistency between the different modality data.(2) By combining the cross modality characteristc of the internet data and exploring effective multimodality fusion method and large data processing approach, we propose an effective topic detection and analysis method by integrating multimodality data and user intention.(3)Overcome the insufficient representation problem of the single modality data, structuralized exibit the topic by intergrating cross media data, and reveal the propagation of the topic. (4)Detect the key event from the topics according to the topic trend analysis, and reveal the interaction between the events when the topic spreading.

英文关键词: video thumbnail;user intent;web topic;cross-media;multimodality

成为VIP会员查看完整内容
0

相关内容

专知会员服务
27+阅读 · 2021年8月15日
专知会员服务
25+阅读 · 2021年8月7日
专知会员服务
20+阅读 · 2021年7月19日
最新《图机器学习》综述论文,19页pdf
专知会员服务
150+阅读 · 2021年5月5日
基于事件社会网络推荐系统综述
专知会员服务
68+阅读 · 2021年1月13日
专知会员服务
45+阅读 · 2020年11月13日
面向大数据领域的事理认知图谱构建与推断分析
专知会员服务
103+阅读 · 2020年8月11日
最新《图神经网络模型与应用》综述论文
专知会员服务
293+阅读 · 2020年8月2日
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
60+阅读 · 2020年7月30日
CIKM'21 | 自监督图神经网络在社会化推荐中的应用
图与推荐
3+阅读 · 2021年11月16日
基于图嵌入技术的推荐系统长文综述
机器学习与推荐算法
0+阅读 · 2021年9月29日
事理图谱:事件演化的规律和模式
哈工大SCIR
34+阅读 · 2019年7月19日
热点! 虚假新闻检测综述
专知
111+阅读 · 2019年2月26日
网络舆情分析
计算机与网络安全
20+阅读 · 2018年10月18日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
38+阅读 · 2020年12月2日
小贴士
相关VIP内容
专知会员服务
27+阅读 · 2021年8月15日
专知会员服务
25+阅读 · 2021年8月7日
专知会员服务
20+阅读 · 2021年7月19日
最新《图机器学习》综述论文,19页pdf
专知会员服务
150+阅读 · 2021年5月5日
基于事件社会网络推荐系统综述
专知会员服务
68+阅读 · 2021年1月13日
专知会员服务
45+阅读 · 2020年11月13日
面向大数据领域的事理认知图谱构建与推断分析
专知会员服务
103+阅读 · 2020年8月11日
最新《图神经网络模型与应用》综述论文
专知会员服务
293+阅读 · 2020年8月2日
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
60+阅读 · 2020年7月30日
相关资讯
CIKM'21 | 自监督图神经网络在社会化推荐中的应用
图与推荐
3+阅读 · 2021年11月16日
基于图嵌入技术的推荐系统长文综述
机器学习与推荐算法
0+阅读 · 2021年9月29日
事理图谱:事件演化的规律和模式
哈工大SCIR
34+阅读 · 2019年7月19日
热点! 虚假新闻检测综述
专知
111+阅读 · 2019年2月26日
网络舆情分析
计算机与网络安全
20+阅读 · 2018年10月18日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员