Wireless powered mobile-edge computing (MEC) has recently emerged as a promising paradigm to enhance the data processing capability of low-power networks, such as wireless sensor networks and internet of things (IoT). In this paper, we consider a wireless powered MEC network that adopts a binary offloading policy, so that each computation task of wireless devices (WDs) is either executed locally or fully offloaded to an MEC server. Our goal is to acquire an online algorithm that optimally adapts task offloading decisions and wireless resource allocations to the time-varying wireless channel conditions. This requires quickly solving hard combinatorial optimization problems within the channel coherence time, which is hardly achievable with conventional numerical optimization methods. To tackle this problem, we propose a Deep Reinforcement learning-based Online Offloading (DROO) framework that implements a deep neural network as a scalable solution that learns the binary offloading decisions from the experience. It eliminates the need of solving combinatorial optimization problems, and thus greatly reduces the computational complexity especially in large-size networks. To further reduce the complexity, we propose an adaptive procedure that automatically adjusts the parameters of the DROO algorithm on the fly. Numerical results show that the proposed algorithm can achieve near-optimal performance while significantly decreasing the computation time by more than an order of magnitude compared with existing optimization methods. For example, the CPU execution latency of DROO is less than $0.1$ second in a $30$-user network, making real-time and optimal offloading truly viable even in a fast fading environment.


翻译:无线电动移动屏蔽计算(MEC)最近成为加强低电网络数据处理能力的有希望的范例,例如无线传感器网络和事物互联网(IoT)等低电网络的数据处理能力。在本文中,我们认为无线电动MEC网络采用二进制卸载政策,以便无线设备(WD)的每个计算任务要么在当地执行,要么完全卸载到MEC服务器。我们的目标是获得一种在线算法,以最佳方式将任务卸载决定和无线资源分配调整到时间变化的无线频道条件。这需要迅速解决频道一致性时段的硬组合优化问题,用传统的数字优化方法很难做到这一点。为了解决这一问题,我们建议一个基于深加强化学习在线上卸载(DROO)的网络框架,将深度神经网络作为可升级的解决方案,从经验中学习二进式卸载决定。我们的目标是获得一种最优化的计算方法,用美元来解决调和无线资源分配问题,从而大大降低成本复杂性,特别是大型网络的计算复杂性。为了进一步降低复杂性,通过常规数字优化实时优化的运行,我们建议一个快速递减快速的运行程序,同时通过不断调整运行。

0
下载
关闭预览

相关内容

【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
202+阅读 · 2020年1月13日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
7+阅读 · 2018年12月26日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Top
微信扫码咨询专知VIP会员