FOLD-R is an automated inductive learning algorithm for learning default rules with exceptions for mixed (numerical and categorical) data. It generates an (explainable) answer set programming (ASP) rule set for classification tasks. We present an improved FOLD-R algorithm, called FOLD-R++, that significantly increases the efficiency and scalability of FOLD-R. FOLD-R++ improves upon FOLD-R without compromising or losing information in the input training data during the encoding or feature selection phase. The FOLD-R++ algorithm is competitive in performance with the widely-used XGBoost algorithm, however, unlike XGBoost, the FOLD-R++ algorithm produces an explainable model. Next, we create a powerful tool-set by combining FOLD-R++ with s(CASP)-a goal-directed ASP execution engine-to make predictions on new data samples using the answer set program generated by FOLD-R++. The s(CASP) system also produces a justification for the prediction. Experiments presented in this paper show that our improved FOLD-R++ algorithm is a significant improvement over the original design and that the s(CASP) system can make predictions in an efficient manner as well.


翻译:FOLD-R+是一个用于学习默认规则的自动感化学习算法,但混合(数字和绝对)数据除外。它产生一个(可解释的)回答数据集编程(ASP)规则,用于分类任务。我们提出了一个改进的FOLD-R算法,称为FOLD-R++,大大提高了FOLD-R-R+的效率和可伸缩性。FOLD-R++在编码或特征选择阶段对FOLD-R-R进行改进,同时不损及或丢失输入培训数据中的信息。FOLD-R++在运行过程中具有竞争性,但与广泛使用的 XGBOost 算法不同,FOLD-R++ 算法产生了一个可解释的模式。接下来,我们通过将FOLD-R+++与S(CASP)-一个目标导向的ASP执行引擎结合起来,建立一个强大的工具集集集,可以使用FOLD-R++生成的答案集成程序对新的数据样品作出预测。SASP系统也为预测提供了理由。在本文上所作的实验显示,我们改进后FOLD-R++ASP的系统可以对原设计作很好的预测。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
已删除
AI掘金志
7+阅读 · 2019年7月8日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Type-augmented Relation Prediction in Knowledge Graphs
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
8+阅读 · 2018年7月12日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
相关论文
Top
微信扫码咨询专知VIP会员