Fine-grained object retrieval aims to learn discriminative representation to retrieve visually similar objects. However, existing top-performing works usually impose pairwise similarities on the semantic embedding spaces to continually fine-tune the entire model in limited-data regimes, thus resulting in easily converging to suboptimal solutions. In this paper, we develop Fine-grained Retrieval Prompt Tuning (FRPT), which steers a frozen pre-trained model to perform the fine-grained retrieval task from the perspectives of sample prompt and feature adaptation. Specifically, FRPT only needs to learn fewer parameters in the prompt and adaptation instead of fine-tuning the entire model, thus solving the convergence to suboptimal solutions caused by fine-tuning the entire model. Technically, as sample prompts, a structure perturbation prompt (SPP) is introduced to zoom and even exaggerate some pixels contributing to category prediction via a content-aware inhomogeneous sampling operation. In this way, SPP can make the fine-grained retrieval task aided by the perturbation prompts close to the solved task during the original pre-training. Besides, a category-specific awareness head is proposed and regarded as feature adaptation, which removes the species discrepancies in the features extracted by the pre-trained model using instance normalization, and thus makes the optimized features only include the discrepancies among subcategories. Extensive experiments demonstrate that our FRPT with fewer learnable parameters achieves the state-of-the-art performance on three widely-used fine-grained datasets.


翻译:精细的天体检索旨在从抽样的快速和特征适应角度学习歧视性的表达方式,但现有的顶级工作通常会给语义嵌入空间带来双向相似之处,从而在有限数据系统中不断微调整个模型,从而使整个模型在有限数据系统中不断微调非最佳解决方案。在本文中,我们开发了精度检索快速图象(FRPT),该模型从抽样的快速和特征适应角度指导一个冷冻的训练前模型,以便执行精度检索任务。具体地说,FRPT只需要在迅速和调整整个模型中学习较少的参数,而不是微调整个模型中微调参数,从而解决整个模型在微调中产生的与非最佳解决方案的趋同性解决方案的趋同性。从技术上,随着样本的加速,一个结构渗透性提示(SPPP)被引入了缩放,甚至夸大一些像素,有助于通过内容敏度的随机采样操作进行分类预测。在这方面,SPPPT可以让通过精度的精度的学习来进行精确的检索,从而理解整个模型的精确地分析,从而在原始的深度分析中实现深度变异差。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
12+阅读 · 2021年9月13日
Arxiv
16+阅读 · 2021年1月27日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员