The responsible use of machine learning tools in real world high-stakes decision making demands that we audit and control for potential biases against underrepresented groups. This process naturally requires access to the sensitive attribute one desires to control, such as demographics, gender, or other potentially sensitive features. Unfortunately, this information is often unavailable. In this work we demonstrate that one can still reliably estimate, and ultimately control, for fairness by using proxy sensitive attributes derived from a sensitive attribute predictor. Specifically, we first show that with just a little knowledge of the complete data distribution, one may use a sensitive attribute predictor to obtain bounds of the classifier's true fairness metric. Second, we demonstrate how one can provably control a classifier's worst-case fairness violation with respect to the true sensitive attribute by controlling for fairness with respect to the proxy sensitive attribute. Our results hold under assumptions that are significantly milder than previous works, and we illustrate these results with experiments on synthetic and real datasets.


翻译:在现实世界中,负责任地使用机器学习工具在现实世界的高度高度需要做出决策,要求我们审计和控制对代表性不足的群体的潜在偏差。这一过程自然需要获取人们想要控制的敏感属性,如人口、性别或其他潜在敏感特征。 不幸的是,这些信息往往无法获得。 在这项工作中,我们证明,通过使用敏感属性预测器产生的代理敏感属性,人们仍然可以可靠地估计并最终控制公平性。具体地说,我们首先显示,只要对完整的数据分布知之甚少,人们就可以使用敏感的属性预测器获得分类员真正公平度量的界限。第二,我们证明如何通过控制对代理敏感属性的公平性,来控制分类者对真正敏感属性的最坏的公平性侵犯。我们根据比以往工作要温和得多的假设,我们用合成和真实数据集的实验来说明这些结果。

0
下载
关闭预览

相关内容

【KDD2022教程】图算法公平性:方法与趋势,200页ppt
专知会员服务
40+阅读 · 2022年8月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2023年4月7日
Arxiv
0+阅读 · 2023年4月3日
VIP会员
相关VIP内容
【KDD2022教程】图算法公平性:方法与趋势,200页ppt
专知会员服务
40+阅读 · 2022年8月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员