Experimental data is often affected by uncontrolled variables that make analysis and interpretation difficult. For spatiotemporal systems, this problem is further exacerbated by their intricate dynamics. Modern machine learning methods are well-suited for modeling complex datasets, but to be effective in science, the result needs to be interpretable. We demonstrate an unsupervised learning technique for extracting interpretable physical parameters from noisy spatiotemporal data and for building a transferable model of the system. In particular, we implement a physics-informed architecture based on variational autoencoders that is designed for analyzing systems governed by partial differential equations (PDEs). The architecture is trained end-to-end and extracts latent parameters that parameterize the dynamics of a learned predictive model for the system. To test our method, we train the architecture on simulated data from a variety of PDEs with varying dynamical parameters that act as uncontrolled variables. Specifically, we examine the Kuramoto-Sivashinsky equation with varying viscosity damping parameter, the nonlinear Schr\"odinger equation with varying nonlinearity coefficient, and the convection-diffusion equation with varying diffusion constant and drift velocity. Numerical experiments show that our method can accurately identify relevant parameters and extract them from raw and even noisy spatiotemporal data (tested with roughly 10% added noise). These extracted parameters correlate well (linearly with $R^2>0.95$) with the ground truth physical parameters used to generate the datasets. Our method for discovering interpretable latent parameters in spatiotemporal systems will allow us to better analyze and understand real-world phenomena and datasets, which often have uncontrolled variables that alter the system dynamics and cause varying behaviors that are difficult to disentangle.


翻译:实验数据往往受到不受控制的变量的影响,这些变量使得分析和解释变得困难。对于随机随机系统来说,这一问题会因复杂的动态而进一步恶化。现代机器学习方法非常适合模拟复杂的数据集,但为了在科学中有效,结果需要被解释。我们展示了一种不受监督的学习技术,从吵闹的波浪时间数据中提取可解释的物理参数,建立系统可转移的模型。特别是,我们实施了基于可变自动读数结构的物理信息化架构,该结构旨在分析由部分差异方程式(PDEs)管理的系统。这个结构是经过训练的从尾到尾的参数,并提取了潜伏参数,这些参数使系统能够将所学的预测模型化。为了测试我们的方法,我们用各种具有不同动态参数的 PDE 来模拟数据,这些参数的作用是不受控制的变量。我们用 Kurammotomoto-Sivshinshipal 等式公式来研究(变量变异的变异的变异性调调调调调调调调调调),Schrnline\\'dograduning commodiversal dalal liversal-liversal dal dal dal liversalmovald sy sys) 系统能化了我们10-movald dal 和变化的变化数据系统。

0
下载
关闭预览

相关内容

现实生活中常常会有这样的问题:缺乏足够的先验知识,因此难以人工标注类别或进行人工类别标注的成本太高。很自然地,我们希望计算机能代我们完成这些工作,或至少提供一些帮助。根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称之为无监督学习
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员