This note complements the paper "One-Way Ticket to Las Vegas and the Quantum Adversary" (arxiv:2301.02003). I develop the ideas behind the adversary bound - universal algorithm duality therein in a different form, using the same perspective as Barnum-Saks-Szegedy in which query algorithms are defined as sequences of feasible reduced density matrices rather than sequences of unitaries. This form may be faster to understand for a general quantum information audience: It avoids defining the "unidirectional relative $\gamma_{2}$-bound" and relating it to query algorithms explicitly. This proof is also more general because the lower bound (and universal query algorithm) apply to a class of optimal control problems rather than just query problems. That is in addition to the advantages to be discussed in Belovs-Yolcu, namely the more elementary algorithm and correctness proof that avoids phase estimation and spectral analysis, allows for limited treatment of noise, and removes another $\Theta(\log(1/\epsilon))$ factor from the runtime compared to the previous discrete-time algorithm.


翻译:本说明补充了论文“拉斯维加斯和量子反射单行票”(arxiv:2301.02003),我以不同的形式发展了对手约束背后的思想-通用算法的二元性,采用了与Barnum-Saks-Szegedy相同的视角,其中查询算法被定义为可行的降低密度矩阵序列而不是单词序列。对于一般量信息受众来说,这种形式可能更快理解:它避免定义“单向相对$\gamma%2}受约束”并明确将其与查询算法联系起来。这一证据也更为笼统,因为较低约束(和通用查询算法)适用于最佳控制问题类别,而不仅仅是查询问题。此外,在Belovs-Yolcu中讨论的优点是避免阶段估测和光谱分析的更基本的算法和正确性证明,允许对噪音进行有限的处理,并且从运行时与以前的离离离离离离离离离离离解算法的另外1美元(\\\\\\\ ipsilon) 系数。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
11+阅读 · 2022年9月1日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
12+阅读 · 2019年3月14日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员