Blockchain has been used in several domains. However, this technology still has major limitations that are largely related to one of its core components, namely the consensus protocol/algorithm. Several solutions have been proposed in literature and some of them are based on the use of Machine Learning (ML) methods. The ML-based consensus algorithms usually waste the work done by the (contributing/participating) nodes, as only winners' ML models are considered/used, resulting in low energy efficiency. To reduce energy waste and improve scalability, this paper proposes an AI-enabled consensus algorithm (named AICons) driven by energy preservation and fairness of rewarding nodes based on their contribution. In particular, the local ML models trained by all nodes are utilised to generate a global ML model for selecting winners, which reduces energy waste. Considering the fairness of the rewards, we innovatively designed a utility function for the Shapley value evaluation equation to evaluate the contribution of each node from three aspects, namely ML model accuracy, energy consumption, and network bandwidth. The three aspects are combined into a single Shapley value to reflect the contribution of each node in a blockchain system. Extensive experiments were carried out to evaluate fairness, scalability, and profitability of the proposed solution. In particular, AICons has an evenly distributed reward-contribution ratio across nodes, handling 38.4 more transactions per second, and allowing nodes to get more profit to support a bigger network than the state-of-the-art schemes.


翻译:区块链已经被应用于多个领域。然而,这项技术仍然存在重大局限性,主要与其核心组成部分之一——共识协议/算法有关。文献中提出了多种解决方案,其中一些是基于使用机器学习(ML)方法的。基于ML的共识算法通常会浪费节点所做的工作,因为只有赢家的ML模型才被考虑/使用,从而导致能源效率低下。为了减少能源浪费并提高可扩展性,本文提出了一种AI增强的共识算法(称为AICons),该算法由同时考虑能量保存和节点贡献公平性驱动。特别地,所有节点训练的本地ML模型被利用来生成全局ML模型以选择赢家,这减少了能源浪费。考虑到奖励的公平性,我们创新地为沙普利值评估方程设计了一个效用函数,以从三个方面评估每个节点的贡献,即ML模型的准确性、能量消耗和网络带宽。三个方面被组合成单个沙普利值,以反映区块链系统中每个节点的贡献。进行了大量实验以评估所提出解决方案的公平性、可扩展性和盈利性。特别地,AICons具有节点间均匀分配的奖励-贡献比,每秒处理38.4个以上交易,并允许节点获得更多利润来支持更大的网络,胜过现有最先进的方案。

0
下载
关闭预览

相关内容

浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月1日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关VIP内容
相关资讯
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员