The neural boom that has sparked natural language processing (NLP) research through the last decade has similarly led to significant innovations in data-to-text generation (DTG). This survey offers a consolidated view into the neural DTG paradigm with a structured examination of the approaches, benchmark datasets, and evaluation protocols. This survey draws boundaries separating DTG from the rest of the natural language generation (NLG) landscape, encompassing an up-to-date synthesis of the literature, and highlighting the stages of technological adoption from within and outside the greater NLG umbrella. With this holistic view, we highlight promising avenues for DTG research that not only focus on the design of linguistically capable systems but also systems that exhibit fairness and accountability.
翻译:随着神经学自然语言处理研究在过去十年中的迅猛发展,数据文本生成技术领域也取得了显著的创新。本概述对神经数据文本生成技术进行了系统性的研究,包括方法、基准数据集和评估协议的结构化分析。本文围绕着将数据文本生成技术与其他自然语言生成技术分开,并包含了最新的文献综述,突出了从NLG更广泛领域内和外部采用技术的各个阶段。我们综合了尚未具备语言能力的系统设计、固定费用与责任制度等领域的前沿研究方向。