Deployed into an open world, object detectors are prone to a type of false positive detection termed open-set errors. We propose GMM-Det, a real-time method for extracting epistemic uncertainty from object detectors to identify and reject open-set errors. GMM-Det trains the detector to produce a structured logit space that is modelled with class-specific Gaussian Mixture Models. At test time, open-set errors are identified by their low log-probability under all Gaussian Mixture Models. We test two common detector architectures, Faster R-CNN and RetinaNet, across three varied datasets spanning robotics and computer vision. Our results show that GMM-Det consistently outperforms existing uncertainty techniques for identifying and rejecting open-set detections, especially at the low-error-rate operating point required for safety-critical applications. GMM-Det maintains object detection performance, and introduces only minimal computational overhead. We also introduce a methodology for converting existing object detection datasets into specific open-set datasets to consistently evaluate open-set performance in object detection. Code for GMM-Det and the dataset methodology will be made publicly available.


翻译:在开放的世界中,物体探测器很容易被假的阳性探测到,称为开放设置错误。我们提议GMM-Det,这是从物体探测器中提取外观不确定性的一种实时方法,以识别和拒绝开放设置错误。GM-Det对探测器进行了结构化的登录空间培训,以生成一个与特定类别Gaussian Mixture模型模式模式相模范的系统化登录空间。在试验时间,根据所有高山混合模型下的低日志概率,发现开放设置错误。我们测试了两个共同的探测器结构,即快速R-CNN和RetinaNet,它跨越了三个跨越机器人和计算机视野的不同数据集。我们的结果显示,GM-Det一贯地超越现有的识别和拒绝开放设置检测的不确定性技术,特别是在安全关键应用程序所需的低eror-比率操作点。GM-Det保持了对象探测的性能,并只引入了最低的计算性能。我们还采用了将现有物体探测数据转换为具体的开放设置数据集的方法。

1
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
6+阅读 · 2021年3月11日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
6+阅读 · 2018年3月19日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关论文
Arxiv
6+阅读 · 2021年3月11日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
6+阅读 · 2018年3月19日
Arxiv
6+阅读 · 2018年1月29日
Top
微信扫码咨询专知VIP会员